Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Ceramic Materials

Series

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 247

Full-Text Articles in Engineering

Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang Mar 2023

Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang

Mathematics and Statistics Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is a direct ink writing process which allows for the creation of near theoretically dense ceramic components with large cross-sections due to oil-assisted drying. Yttria-stabilized zirconia (YSZ) colloidal pastes (∼d50 ≲ 1 µm) were used in CODE to produce dense (multi-road infill and ≳ 98% relative density), large continuous volume (> 1 cm3), and high fidelity (nozzle diameters ≲ 1 mm) structural ceramic components. However, many of these printed components underwent significant particle migration after forming. The reason for this particle migration defect was investigated using the coffee-ring effect for dilute solutions and rheological methods for …


Anisotropic Thermal Expansion In High-Entropy Multicomponent Alb2-Type Diboride Solid Solutions, Frédéric Monteverde, Mattia Gaboardi, Federico Saraga, Lun Feng, William Fahrenholtz, Gregory Hilmas Mar 2023

Anisotropic Thermal Expansion In High-Entropy Multicomponent Alb2-Type Diboride Solid Solutions, Frédéric Monteverde, Mattia Gaboardi, Federico Saraga, Lun Feng, William Fahrenholtz, Gregory Hilmas

Mathematics and Statistics Faculty Research & Creative Works

High-entropy (HE) ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding. Among others, HE diborides stand out owing to their intrinsic anisotropic layered structure and ability to withstand ultra-high temperatures. Herein, we employed in-situ high-resolution synchrotron diffraction over a plethora of multicomponent compositions, with four to seven transition metals, with the intent of understanding the thermal lattice expansion following different composition or synthesis process. As a result, we were able to control the average thermal expansion (TE) from 1.3 x 10−6 to 6.9 …


Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang Mar 2023

Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang

Materials Science and Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is a direct ink writing process which allows for the creation of near theoretically dense ceramic components with large cross-sections due to oil-assisted drying. Yttria-stabilized zirconia (YSZ) colloidal pastes (∼d50 ≲ 1 µm) were used in CODE to produce dense (multi-road infill and ≳ 98% relative density), large continuous volume (> 1 cm3), and high fidelity (nozzle diameters ≲ 1 mm) structural ceramic components. However, many of these printed components underwent significant particle migration after forming. The reason for this particle migration defect was investigated using the coffee-ring effect for dilute solutions and rheological methods for …


Anisotropic Thermal Expansion In High-Entropy Multicomponent Alb2-Type Diboride Solid Solutions, Frédéric Monteverde, Mattia Gaboardi, Federico Saraga, Lun Feng, William Fahrenholtz, Gregory Hilmas Mar 2023

Anisotropic Thermal Expansion In High-Entropy Multicomponent Alb2-Type Diboride Solid Solutions, Frédéric Monteverde, Mattia Gaboardi, Federico Saraga, Lun Feng, William Fahrenholtz, Gregory Hilmas

Materials Science and Engineering Faculty Research & Creative Works

High-entropy (HE) ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding. Among others, HE diborides stand out owing to their intrinsic anisotropic layered structure and ability to withstand ultra-high temperatures. Herein, we employed in-situ high-resolution synchrotron diffraction over a plethora of multicomponent compositions, with four to seven transition metals, with the intent of understanding the thermal lattice expansion following different composition or synthesis process. As a result, we were able to control the average thermal expansion (TE) from 1.3 x 10−6 to 6.9 …


Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang Mar 2023

Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang

Materials Science and Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is a direct ink writing process which allows for the creation of near theoretically dense ceramic components with large cross-sections due to oil-assisted drying. Yttria-stabilized zirconia (YSZ) colloidal pastes (∼d50 ≲ 1 µm) were used in CODE to produce dense (multi-road infill and ≳ 98% relative density), large continuous volume (> 1 cm3), and high fidelity (nozzle diameters ≲ 1 mm) structural ceramic components. However, many of these printed components underwent significant particle migration after forming. The reason for this particle migration defect was investigated using the coffee-ring effect for dilute solutions and rheological methods for …


Anisotropic Thermal Expansion In High-Entropy Multicomponent Alb2-Type Diboride Solid Solutions, Frédéric Monteverde, Mattia Gaboardi, Federico Saraga, Lun Feng, William Fahrenholtz, Gregory Hilmas Mar 2023

Anisotropic Thermal Expansion In High-Entropy Multicomponent Alb2-Type Diboride Solid Solutions, Frédéric Monteverde, Mattia Gaboardi, Federico Saraga, Lun Feng, William Fahrenholtz, Gregory Hilmas

Materials Science and Engineering Faculty Research & Creative Works

High-entropy (HE) ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding. Among others, HE diborides stand out owing to their intrinsic anisotropic layered structure and ability to withstand ultra-high temperatures. Herein, we employed in-situ high-resolution synchrotron diffraction over a plethora of multicomponent compositions, with four to seven transition metals, with the intent of understanding the thermal lattice expansion following different composition or synthesis process. As a result, we were able to control the average thermal expansion (TE) from 1.3 x 10−6 to …


Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni Jan 2023

Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni

Mathematics and Statistics Faculty Research & Creative Works

Thermal and electrical properties were measured for TiB2 ceramics containing varying CrB2 contents up to 33 mol%. The room-temperature thermal diffusivity decreased with increasing Cr content from 0.330 ± 0.003 cm2/s for pure TiB2 to 0.060 ± 0.003 cm2/s for (Ti0.66Cr0.33)B2. The amount of anisotropy in the coefficients of thermal expansion increased with increasing Cr content and the c-axis had the greatest dependence on Cr addition, with an increase of more than 25% in the thermal expansion for 33 mol% CrB2 compared to TiB2, whereas the a-axis only increased by about 8%. The electrical conductivity was the lowest for (Ti0.66Cr0.33)B2 …


Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex Gerald, Jie Huang Jan 2023

Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex Gerald, Jie Huang

PSMRC Faculty Research

This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in extreme temperature environments. Comprehensive tests demonstrate the remarkable performance and resilience of FBGs at temperatures up to 1600°C, confirming their suitability for deployment in such conditions. The study also reveals significant fringe visibility improvements of up to ∼10 dB on a 1-m-long sapphire optical fiber through rapid heat treatment, representing a first-time achievement to the best of our knowledge. …


Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang Jan 2023

Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research reports a distributed fiber optic high-temperature sensing system tailored for applications in the steel industry and various other sectors. Recent advancements in optical sensor technology have led to the exploration of sapphire crystal fibers as a solution for sensing in harsh environments. Utilizing a femtosecond (fs) laser, cascaded fiber Bragg gratings (FBGs) were meticulously fabricated within a multimode sapphire optical fiber. These FBGs endowed the system with distributed sensing capabilities and underwent rigorous testing under extreme temperatures, reaching up to 1,800 °C. The study delves into the investigation of the FBG reflection spectrum, facilitated by the development of …


Mechanical Properties Of Zrb2 Ceramics Determined By Two Laboratories, Jeffrey J. Swab, Jecee Jarman, William Fahrenholtz, Jeremy Lee Watts Jan 2023

Mechanical Properties Of Zrb2 Ceramics Determined By Two Laboratories, Jeffrey J. Swab, Jecee Jarman, William Fahrenholtz, Jeremy Lee Watts

Materials Science and Engineering Faculty Research & Creative Works

The mechanical properties for zirconium diboride (ZrB2) were measured at two laboratories and compared. Two billets of ZrB2 were prepared by hot-pressing commercial powder. The relative densities of the billets were >99% and with an average grain size of 5.9 ± 4.5 µm. Both laboratories prepared American Society for Testing and Materials (ASTM) C1161 B-bars for strength and ASTM C1421 bars with notch configuration A for fracture toughness. Specimens were machined by diamond grinding at the Army Research Laboratory (ARL) and electrical discharge machining (EDM) at Missouri S&T. Strength bars tested at Missouri S&T were polished to a.25 μm finish …


Boro/Carbothermal Reduction Co-Synthesis Of Dual-Phase High-Entropy Boride-Carbide Ceramics, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Stefano Curtarolo Jan 2023

Boro/Carbothermal Reduction Co-Synthesis Of Dual-Phase High-Entropy Boride-Carbide Ceramics, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Stefano Curtarolo

Materials Science and Engineering Faculty Research & Creative Works

Dense, dual-phase (Cr,Hf,Nb,Ta,Ti,Zr)B2-(Cr,Hf,Nb,Ta,Ti,Zr)C ceramics were synthesized by boro/carbothermal reduction of oxides and densified by spark plasma sintering. The high-entropy carbide content was about 14.5 wt%. Grain growth was suppressed by the pinning effect of the two-phase ceramic, which resulted in average grain sizes of 2.7 ± 1.3 µm for the high-entropy boride phase and 1.6 ± 0.7 µm for the high-entropy carbide phase. Vickers hardness values increased from 25.2 ± 1.1 GPa for an indentation load of 9.81 N to 38.9 ± 2.5 GPa for an indentation load of 0.49 N due to the indentation size effect. Boro/carbothermal …


Oxidation Behavior Of Nb-Coated Zirconium Diboride, Jan E. Förster, William Fahrenholtz, Gregory E. Hilmas, Ravisankar Naraparaju Jan 2023

Oxidation Behavior Of Nb-Coated Zirconium Diboride, Jan E. Förster, William Fahrenholtz, Gregory E. Hilmas, Ravisankar Naraparaju

Materials Science and Engineering Faculty Research & Creative Works

Metallic Nb-Coatings Were Deposited on Top of ZrB2 by Means of Magnetron Sputtering to Improve its Oxidation Resistance. High Temperature Oxidation Tests Have Revealed that the Metallic Nb-Coatings Lead to the Formation of a Dense Solid and Protective Reaction Zone in Addition to a More Stable B2O3 Liquid Solution at the Surface. Compared to Baseline ZrB2, a Reduction in the Oxidation Kinetics, as Well as the Thickness of the Porous Zirconia Layer by 71%, Has Been Achieved with the Help of Nb-Coatings. a Liquid Phase Sintering by Molten Nb2O5 Mechanism Was …


High Temperature Dielectric Properties Of Calcium Zirconate, Alan Devoe, Hung Trinh, Fatih Dogan Jan 2023

High Temperature Dielectric Properties Of Calcium Zirconate, Alan Devoe, Hung Trinh, Fatih Dogan

Materials Science and Engineering Faculty Research & Creative Works

The electrical properties of dense, high purity CaZrO3 discs, sintered at 1380°C with and without added ZrO2, were investigated up to 950°C. Dielectric constant, loss tangent, and electrical conductivity were measured from 25 to 725°C, and the real and imaginary impedances were measured between 800 and 950°C by impedance spectroscopy techniques. Dielectric constant increased by 8% above 300°C and loss tangent increased from.1% at 25°C to ∼2% above 300°C. Activation energy of electrical conductivity determined between 300°C and 950°C by alternative current (AC) and direct current (DC) measurements. These results indicate that CaZrO3 could be a useful dielectric material for …


Strength Retention Of Single-Phase High-Entropy Diboride Ceramics Up To 2000°C, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Yue Zhou, Jincheng Bai Jan 2023

Strength Retention Of Single-Phase High-Entropy Diboride Ceramics Up To 2000°C, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Yue Zhou, Jincheng Bai

Materials Science and Engineering Faculty Research & Creative Works

The mechanical properties of single-phase (Hf0.2,Nb0.2,Ta0.2,Ti0.2,Zr0.2)B2 ceramics with high purity were investigated. The resulting ceramics had relative density greater than 99%, and an average grain size of 4.3 ± 1.6 μm. At room temperature (RT), the Vickers hardness was 25.2 ± 0.6 GPa at a load of 0.49 N, Young's modulus was 551 ± 7 GPa, fracture toughness was 4.5 ± 0.4 MPa m1/2, and flexural strength was 507 ± 10 MPa. Flexural strength increased by more than 50% from 507 ± 10 MPa at RT to 776 ± …


Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni Jan 2023

Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni

Materials Science and Engineering Faculty Research & Creative Works

Thermal and electrical properties were measured for TiB2 ceramics containing varying CrB2 contents up to 33 mol%. The room-temperature thermal diffusivity decreased with increasing Cr content from 0.330 ± 0.003 cm2/s for pure TiB2 to 0.060 ± 0.003 cm2/s for (Ti0.66Cr0.33)B2. The amount of anisotropy in the coefficients of thermal expansion increased with increasing Cr content and the c-axis had the greatest dependence on Cr addition, with an increase of more than 25% in the thermal expansion for 33 mol% CrB2 compared to TiB2, whereas the a-axis only increased by about 8%. The electrical conductivity was the lowest for (Ti0.66Cr0.33)B2 …


Final-Stage Densification Kinetics Of Direct Current–Sintered Zrb2, Austin D. Stanfield, Steven M. Smith, Suzana Filipović, Nina Obradović, Vladimir Buljak, Gregory E. Hilmas, William Fahrenholtz Jan 2023

Final-Stage Densification Kinetics Of Direct Current–Sintered Zrb2, Austin D. Stanfield, Steven M. Smith, Suzana Filipović, Nina Obradović, Vladimir Buljak, Gregory E. Hilmas, William Fahrenholtz

Materials Science and Engineering Faculty Research & Creative Works

Final-stage sintering was analyzed for nominally phase pure zirconium diboride synthesized by borothermal reduction of high-purity ZrO2. Analysis was conducted on ZrB2 ceramics with relative densities greater than 90% using the Nabarro–Herring stress–directed vacancy diffusion model. Temperatures of 1900°C or above and an applied uniaxial pressure of 50 MPa were required to fully densify ZrB2 ceramics by direct current sintering. Ram travel data were collected and used to determine the relative density of the specimens during sintering. Specimens sintered between 1900 and 2100°C achieved relative densities greater than 97%, whereas specimens sintered below 1900°C failed to …


The Effect Of Crystal Anisotropy On Fracture Toughness And Strength Of Zrb2 Microcantilevers, Tamás Csanádi, Ahmad Azizpour, Marek Vojtko, William Fahrenholtz Jan 2023

The Effect Of Crystal Anisotropy On Fracture Toughness And Strength Of Zrb2 Microcantilevers, Tamás Csanádi, Ahmad Azizpour, Marek Vojtko, William Fahrenholtz

Materials Science and Engineering Faculty Research & Creative Works

The influence of crystal anisotropy on the micromechanical properties of ceramic grains plays an important role in the design of the macromechanical performance of bulk polycrystalline samples. To this end, the effect of crystal orientation on fracture toughness and strength was investigated by microcantilever bending experiments combined with finite element method (FEM) simulations in grains of a polycrystalline ZrB2 sample. The sample was prepared by hot pressing and the crystal orientations were determined by electron backscatter diffraction after careful surface preparation. The bending tests were carried out on notched and unnotched microcantilevers cut from specific grains along the prismatic (⊥ …


Effect Of Mechanical Activation On Carbothermal Synthesis And Densification Of Zrc, Nina Obradović, Lun Feng, Suzana Filipović, Miljana Mirković, Darko Kosanović, Jelena Rogan, William Fahrenholtz Jan 2023

Effect Of Mechanical Activation On Carbothermal Synthesis And Densification Of Zrc, Nina Obradović, Lun Feng, Suzana Filipović, Miljana Mirković, Darko Kosanović, Jelena Rogan, William Fahrenholtz

Materials Science and Engineering Faculty Research & Creative Works

Zirconium carbide ceramics were prepared by carbothermal reduction of ZrO2 and C that were mixed by high-energy ball milling. Powders were milled for times from 0 to 120 min in air. As milling time increased, the surface area of the powders increased, indicating significant particle size reduction. Milled powders were reacted at 1600 °C and then densified by spark plasma sintering at 2000 °C, which was sufficient to convert the starting powders to zirconium carbide. Unmilled powders did not reach full density. Milled powders reached full density, but ZrO2 impurities were found for specimens prepared from powders milled …


High Temperature Confocal Scanning Laser Microscopy Analysis Of Dead-Burned Magnesia Aggregates, Tyler Richards, Viraj Athavale, Jeffrey D. Smith, Ronald J. O'Malley Jan 2023

High Temperature Confocal Scanning Laser Microscopy Analysis Of Dead-Burned Magnesia Aggregates, Tyler Richards, Viraj Athavale, Jeffrey D. Smith, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Dead-Burned Magnesia is a Commonly Used Material in the Manufacturing of Refractories for the Steelmaking Industry. Aggregates of Dead-Burned Magnesia Contain Secondary Phases Due to the Impurities within the Magnesite Rock Used in its Production. While These Phases Can Aid in Sintering Magnesia, They May Have Some Impact on the High-Temperature Performance of the Refractory Product. High-Temperature Confocal Scanning Laser Microscopy Was Utilized to Observe the Behavior of Dead-Burned Magnesia Aggregates at Elevated Temperatures (Up to 1550°C). Liquid Formation Was Detected Even at Temperatures Below 1350°C. in Some Cases, This Liquid Quickly Exuded from the Aggregate Surface. This Liquid Phase …


Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni Jan 2023

Thermal And Electrical Properties Of Spark Plasma Sintered (Ti,Cr)B2 Ceramics, Steven M. Smith, Lun Feng, William Fahrenholtz, Gregory E. Hilmas, Laura Silvestroni

Materials Science and Engineering Faculty Research & Creative Works

Thermal and electrical properties were measured for TiB2 ceramics containing varying CrB2 contents up to 33 mol%. The room-temperature thermal diffusivity decreased with increasing Cr content from 0.330 ± 0.003 cm2/s for pure TiB2 to 0.060 ± 0.003 cm2/s for (Ti0.66Cr0.33)B2. The amount of anisotropy in the coefficients of thermal expansion increased with increasing Cr content and the c-axis had the greatest dependence on Cr addition, with an increase of more than 25% in the thermal expansion for 33 mol% CrB2 compared to TiB2, whereas the …


Fracture Response Of Wollastonite Fiber-Reinforced Cementitious Composites: Evaluation Using Micro-Indentation And Finite Element Simulation, Sami Doner, Gideon A. Lyngdoh, Sumeru Nayak, Sumanta Das Jun 2022

Fracture Response Of Wollastonite Fiber-Reinforced Cementitious Composites: Evaluation Using Micro-Indentation And Finite Element Simulation, Sami Doner, Gideon A. Lyngdoh, Sumeru Nayak, Sumanta Das

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

The paper presents indentation studies on wollastonite fiber incorporated cementitious systems. The acicular nature of the fibers is poised to delay the coalescence of micro-cracks in such systems thus leading to tougher building materials. Towards that end, load-penetration depth results from the indentation studies are employed to ascertain elastic and fracture properties of wollastonite-incorporated cementitious composites. While up to 10% mass-based cement-replacement by wollastonite results in comparable elastic moduli as compared to conventional binders, the fracture toughness increases by as much as 33%. In order to gain insights into the toughening mechanisms brought about by the fine fibers, a microstructure-guided …


Assembly Of Alumina Particles In Aqueous Suspensions Induced By High‐Frequency Ac Electric Field, James E. John, Shizhi Qian, Dipankar Ghosh Jan 2022

Assembly Of Alumina Particles In Aqueous Suspensions Induced By High‐Frequency Ac Electric Field, James E. John, Shizhi Qian, Dipankar Ghosh

Mechanical & Aerospace Engineering Faculty Publications

The role of high-frequency alternating current (AC) electric field in the assembly of alumina particles in aqueous media was investigated. Field–particle interactions were in situ investigated for coarse and fine powder particles in very dilute suspensions. For both coarse and fine particles, AC field-induced assembly led to the formation of chains of particles within a minute, which were aligned in the field direction. However, a much finer network of particle chains evolved in fine particle suspensions. Threshold field strength for chain formation was also lower for fine particles (28 V/mm) than for coarse particles (50 V/mm), suggesting stronger interactions for …


Microstructural And Optical Properties Of Mgal2o4 Spinel: Effects Of Mechanical Activation, Y2o3 And Graphene Additions, Nina Obradovic, William Fahrenholtz, Cole Corlett, Suzana Filipovic, Marko Nikolic, Bojan A. Marinkovic, Simone Failla, Diletta Sciti, Daniele Di Rosa, Elisa Sani Dec 2021

Microstructural And Optical Properties Of Mgal2o4 Spinel: Effects Of Mechanical Activation, Y2o3 And Graphene Additions, Nina Obradovic, William Fahrenholtz, Cole Corlett, Suzana Filipovic, Marko Nikolic, Bojan A. Marinkovic, Simone Failla, Diletta Sciti, Daniele Di Rosa, Elisa Sani

Materials Science and Engineering Faculty Research & Creative Works

Magnesium Aluminate and Other Alumina-Based Spinels Attract Attention Due to their High Hardness, High Mechanical Strength, and Low Dielectric Constant. MgAl2O4 Was Produced by a Solid-State Reaction between MgO and Α-Al2O3 Powders. Mechanical Activation for 30 Min in a Planetary Ball Mill Was Used to Increase the Reactivity of Powders. Yttrium Oxide and Graphene Were Added to Prevent Abnormal Grain Growth during Sintering. Samples Were Sintered by Hot Pressing under Vacuum at 1450◦C. Phase Composition and Microstructure of Sintered Specimens Were Characterized by X-Ray Powder Diffraction and Scanning Electron Microscopy. Rietveld Analysis Revealed 100% …


Review: Factors Affecting Composite Laminates Against Lightning Strikes, Aaryan Manoj Nair Jul 2021

Review: Factors Affecting Composite Laminates Against Lightning Strikes, Aaryan Manoj Nair

Publications and Research

Lightning strike protection (LSP) have recently been a newly developing field particularly with the emergence of graphene thin film integration into carbon fiber composite structures. This technology has a widespread application in airplanes, wind turbines, and other instruments which are susceptible to frequent lightning strikes. Electrical discharge of the instrument in a safe manner is vital for the safety of the passengers (in the case of flights) as well as the integrity of the aircraft structures because of their specific mechanical and structural properties, which are essential for their functioning. The purpose of the study is to fabricate graphene thin …


Research Trend Of Metal Matrix Composites Reinforced With Silica Extracted By Green Route: A Bibliometric Analysis, Rinku Datkhile, Meena Laad, Babaji Ghule Jan 2021

Research Trend Of Metal Matrix Composites Reinforced With Silica Extracted By Green Route: A Bibliometric Analysis, Rinku Datkhile, Meena Laad, Babaji Ghule

Library Philosophy and Practice (e-journal)

Metal Matrix Composites have acquired an important place in the engineering applications due to their distinctive characteristics such as high specific strength, lower specific gravity, improved material stiffness, better durability, enhanced creep and fatigue strength etc. Worldwide scientists are working on the improvement of mechanical properties of composite materials. The present work attempts to summarise all the research carried out on metal matrix composites reinforced with silica extracted by green route and provides up-to-date research material for researchers who are interested in the field of composites with metal matrices. Scopus databases and software such as Gephi Vos Viewer and Table2Net …


Degradation Issues And Stabilization Strategies Of Protonic Ceramic Electrolysis Cells For Steam Electrolysis, Hanrui Su, Yun Hang Hu Jan 2021

Degradation Issues And Stabilization Strategies Of Protonic Ceramic Electrolysis Cells For Steam Electrolysis, Hanrui Su, Yun Hang Hu

Michigan Tech Publications

Protonic ceramic electrolysis cells (PCECs) are attractive electrochemical devices for converting electrical energy to chemicals due to their high conversion efficiency, favorable thermodynamics, fast kinetics, and inexpensive materials. Compared with conventional oxygen ion-conducting solid oxide electrolysis cells, PCECs operate at a lower operating temperature and a favorable operation mode, thus expecting high durability. However, the degradation of PCECs is still significant, hampering their development. In this review, the typical degradations of PCECs are summarized, with emphasis on the chemical stability of the electrolytes and the air electrode materials. Moreover, the degradation mechanism and influencing factors are assessed deeply. Finally, the …


A Bibliometric Survey On Polymer Composites In Energy Storage Applications, Babaji Ghule, Meena Laad Nov 2020

A Bibliometric Survey On Polymer Composites In Energy Storage Applications, Babaji Ghule, Meena Laad

Library Philosophy and Practice (e-journal)

Ceramic polymer composites have gained a significant place in energy storage applications for electrical capacitors due to their distinguished properties. There is a huge demand of capacitors with high energy density, high dielectric strength, negligibly low dielectric loss, light weight, chemically less reactive in energy storage applications. These requirements can be fulfilled by ceramic polymer composites only which exhibit all the above-mentioned characteristics. Considering the huge demand of such capacitors, it has attracted the attention of researchers around the world. The present work attempts to summarise all the research conducted on Polymer Composites for energy storage applications and provides an …


Effects Of Inert Additives On Cyclotrimethylene-Trinitramine (Rdx)/Trinitrotoluene (Tnt) Detonation Parameters To Predict Detonation Synthesis Phase Production, Martin Langenderfer, William Fahrenholtz, Catherine E. Johnson Nov 2020

Effects Of Inert Additives On Cyclotrimethylene-Trinitramine (Rdx)/Trinitrotoluene (Tnt) Detonation Parameters To Predict Detonation Synthesis Phase Production, Martin Langenderfer, William Fahrenholtz, Catherine E. Johnson

Materials Science and Engineering Faculty Research & Creative Works

A methodology was developed to predict pressure and temperature regimes achieved during detonation of RDX/TNT compositions with inert granular inclusions. The predicted pressures and temperatures are used as inputs for thermochemical simulations to design detonation synthesis experiments that utilize shock-induced chemical reactions to produce ceramic nanomaterials. This study computationally assessed the effects of inert spherical sand inclusions and porosity produced by inert additives on the sensitivity of the explosive composition during the shock-to-detonation transition using a limited scope approach through Lee-Tarver ignition and growth modeling. On the continuum scale, the effects of inert additives on pressure generation behind the detonation …


Interactions Between Dry Vibratable Tundish Linings And Steel Melts, Tyler M. Richards, Ronald J. O'Malley, Jeffrey D. Smith, Todd P. Sander Sep 2020

Interactions Between Dry Vibratable Tundish Linings And Steel Melts, Tyler M. Richards, Ronald J. O'Malley, Jeffrey D. Smith, Todd P. Sander

Materials Science and Engineering Faculty Research & Creative Works

Interactions between two tundish working linings and molten steel were investigated using industrial samples and laboratory testing. Periclase-based dry vibe linings from two production facilities were sampled and examined after casting: one containing 30 wt.% olivine and one without olivine. Cathodoluminescence imaging, secondary electron microscopy, energydispersive spectroscopy and x-ray diffraction analysis were performed to characterize the interactions. An experiment was developed to replicate the conditions found in a production tundish on the laboratory scale. Results comparing interactions observed in laboratory lining tests and commercial lining samples for the two lining materials are presented and discussed.


Predicting Effective Fracture Toughness Of Zrb₂-Based Ultra-High Temperature Ceramics By Phase-Field Modeling, Arezoo Emdadi, Jeremy Lee Watts, William Fahrenholtz, Greg Hilmas, Mohsen Asle Zaeem Jul 2020

Predicting Effective Fracture Toughness Of Zrb₂-Based Ultra-High Temperature Ceramics By Phase-Field Modeling, Arezoo Emdadi, Jeremy Lee Watts, William Fahrenholtz, Greg Hilmas, Mohsen Asle Zaeem

Materials Science and Engineering Faculty Research & Creative Works

The effective fracture toughness (EFT) of ZrB2-C ceramics with different engineered microarchitectures was numerically evaluated by phase-field modeling. To verify the model, fibrous monoliths (elongated hexagonal ZrB2-rich cells in a continuous C-rich matrix) with different volume fractions of a C-rich phase were considered. Architectures containing 10 and 30 vol% of C-rich phase showed EFT values about 42% more than that of pure ZrB2. Increasing the C-rich phase to 50 vol%, dropped toughness significantly, which is in agreement with the experimental results. Replacing hexagonal cells with cylindrical, triangular, or square cells of the same cross-sectional …