Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 80

Full-Text Articles in Engineering

Whole Cell Cross-Linking To Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs, Bart C. Weimer, Poyin Chen, Prerak T. Desai, Dong Chen, Jigna Shah Jul 2018

Whole Cell Cross-Linking To Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs, Bart C. Weimer, Poyin Chen, Prerak T. Desai, Dong Chen, Jigna Shah

Biological Engineering Faculty Publications

Bacterial surface ligands mediate interactions with the host cell during association that determines the specific outcome for the host–microbe association. The association begins with receptors on the host cell binding ligands on the microbial cell to form a partnership that initiates responses in both cells. Methods to determine the specific cognate partnerships are lacking. Determining these molecular interactions between the host and microbial surfaces are difficult, yet crucial in defining biologically important events that are triggered during association of the microbiome, and critical in defining the initiating signal from the host membrane that results in pathology or commensal association. In …


Hydrotreating Of Guaiacol: A Comparative Study Of Red Mud-Supported Nickel And Commercial Ni/Sio2-Al2o3 Catalysts, Hossein Jahromi, Foster Agblevor May 2018

Hydrotreating Of Guaiacol: A Comparative Study Of Red Mud-Supported Nickel And Commercial Ni/Sio2-Al2o3 Catalysts, Hossein Jahromi, Foster Agblevor

Biological Engineering Faculty Publications

Upgrading of bio-oil through catalytic hydrotreating was investigated with guaiacol as a model compound. A nickel supported on red mud (Ni/RM) hydrotreating catalyst was developed and compared to the standard Ni/SiO2-Al2O3 catalysts under similar experimental conditions. The Ni/RM catalyst was characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), BET specific surface area, and temperature programmed reduction (TPR). The effects of reaction temperature (300, 350, 400 °C) and initial hydrogen pressure (4.83 MPa (700 psi), 5.52 MPa (800 psi), and 6.21 MPa (900 psi)) on products distribution …


Microfluidic Chip For Non-Invasive Analysis Of Tumor Cells Interaction With Anti-Cancer Drug Doxorubicin By Afm And Raman Spectroscopy, Han Zhang, Lifu Xiao, Qifei Li, Xiaojun Qi, Anhong Zhou Apr 2018

Microfluidic Chip For Non-Invasive Analysis Of Tumor Cells Interaction With Anti-Cancer Drug Doxorubicin By Afm And Raman Spectroscopy, Han Zhang, Lifu Xiao, Qifei Li, Xiaojun Qi, Anhong Zhou

Biological Engineering Faculty Publications

Raman spectroscopy has been playing an increasingly significant role for cell classification. Here, we introduce a novel microfluidic chip for non-invasive Raman cell natural fingerprint collection. Traditional Raman spectroscopy measurement of the cells grown in a Polydimethylsiloxane (PDMS) based microfluidic device suffers from the background noise from the substrate materials of PDMS when intended to apply as an in vitro cell assay. To overcome this disadvantage, the current device is designed with a middle layer of PDMS layer sandwiched by two MgF2slides which minimize the PDMS background signal in Raman measurement. Three cancer cell lines, including a human lung cancer …


3d Tissue Engineering, An Emerging Technique For Pharmaceutical Research, Gregory Jensen, Christian Morrill, Yu Huang Mar 2018

3d Tissue Engineering, An Emerging Technique For Pharmaceutical Research, Gregory Jensen, Christian Morrill, Yu Huang

Biological Engineering Faculty Publications

Tissue engineering and the tissue engineering model have shown promise in improving methods of drug delivery, drug action, and drug discovery in pharmaceutical research for the attenuation of the central nervous system inflammatory response. Such inflammation contributes to the lack of regenerative ability of neural cells, as well as the temporary and permanent loss of function associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review is focused specifically on the recent advances in the tissue engineering model made by altering scaffold biophysical and biochemical properties for use in the treatment of neurodegenerative diseases. …


A Collaborative Solution To Harmful Algal Blooms In Utah, Kyle Hillman, Bethany Jensen, Ammon Balle Jan 2018

A Collaborative Solution To Harmful Algal Blooms In Utah, Kyle Hillman, Bethany Jensen, Ammon Balle

Research on Capitol Hill

Harmful algal blooms (HABs)…

  • affect Utah Lake, Scofield Reservoir, Jordanelle Reservoir, Mantua Lake, and other water bodies throughout Utah
  • are toxic to public health, the environment, and the economy


In Vivo Raman Spectroscopy For Biochemical Monitoring Of The Human Cervix Throughout Pregnancy, Christine M. O'Brien, Elizabeth Vargis, Amy Rudin, James C. Slaughter, Giju Thomas, J. Michael Newton, Jeff Reese, Kelly A. Bennett, Anita Mahadevan-Jansen Jan 2018

In Vivo Raman Spectroscopy For Biochemical Monitoring Of The Human Cervix Throughout Pregnancy, Christine M. O'Brien, Elizabeth Vargis, Amy Rudin, James C. Slaughter, Giju Thomas, J. Michael Newton, Jeff Reese, Kelly A. Bennett, Anita Mahadevan-Jansen

Biological Engineering Faculty Publications

Background

The cervix must undergo significant biochemical remodeling to allow for successful parturition. This process is not fully understood, especially in instances of spontaneous preterm birth. In vivo Raman spectroscopy is an optical technique that can be used to investigate the biochemical composition of tissue longitudinally and noninvasively in human beings, and has been utilized to measure physiology and disease states in a variety of medical applications.

Objective

The purpose of this study is to measure in vivo Raman spectra of the cervix throughout pregnancy in women, and to identify biochemical markers that change with the preparation for delivery and …


Modeling De Novo Granulation Of Anaerobic Sludge, Anna Doloman, Honey Varghese, Charles D. Miller, Nicholas Flann Jul 2017

Modeling De Novo Granulation Of Anaerobic Sludge, Anna Doloman, Honey Varghese, Charles D. Miller, Nicholas Flann

Computer Science Faculty and Staff Publications

Background: A unique combination of mechanical, physiochemical and biological forces influences granulation during processes of anaerobic digestion. Understanding this process requires a systems biology approach due to the need to consider not just single-cell metabolic processes, but also the multicellular organization and development of the granule.

Results: In this computational experiment, we address the role that physiochemical and biological processes play in granulation and provide a literature-validated working model of anaerobic granule de novo formation. The agent-based model developed in a cDynoMiCs simulation environment successfully demonstrated a de novo granulation in a glucose fed system, with the average specific methanogenic …


Decoding And Reprogramming Fungal Iterative Nonribosomal Peptide Synthetases, Daya Yu, Fuchao Xu, Shuwei Zhang, Jixun Zhan May 2017

Decoding And Reprogramming Fungal Iterative Nonribosomal Peptide Synthetases, Daya Yu, Fuchao Xu, Shuwei Zhang, Jixun Zhan

Biological Engineering Faculty Publications

Nonribosomal peptide synthetases (NRPSs) assemble a large group of structurally and functionally diverse natural products. While the iterative catalytic mechanism of bacterial NRPSs is known, it remains unclear how fungal NRPSs create products of desired length. Here we show that fungal iterative NRPSs adopt an alternate incorporation strategy. Beauvericin and bassianolide synthetases have the same C1-A1-T1-C2-A2-MT-T2a-T2b-C3 domain organization. During catalysis, C3 and C2 take turns to incorporate the two biosynthetic precursors into the growing depsipeptide chain that swings between T1 and T …


A Computational Study Of Vegf Production By Patterned Retinal Epithelial Cell Colonies As A Model For Neovascular Macular Degeneration, Qanita Bani Baker, Gregory J. Podgorski, Elizabeth Vargis, Nicholas Flann Jan 2017

A Computational Study Of Vegf Production By Patterned Retinal Epithelial Cell Colonies As A Model For Neovascular Macular Degeneration, Qanita Bani Baker, Gregory J. Podgorski, Elizabeth Vargis, Nicholas Flann

Biology Faculty Publications

Background: The configuration of necrotic areas within the retinal pigmented epithelium is an important element in the progression of age-related macular degeneration (AMD). In the exudative (wet) and non-exudative (dry) forms of the disease, retinal pigment epithelial (RPE) cells respond to adjacent atrophied regions by secreting vascular endothelial growth factor (VEGF) that in turn recruits new blood vessels which lead to a further reduction in retinal function and vision. In vitro models exist for studying VEGF expression in wet AMD (Vargis et al., Biomaterials 35(13):3999–4004, 2014), but are limited in the patterns of necrotic and intact RPE epithelium they can …


Biomanufacturing Through Igem-An International Student Competition, Asif Rahman, Ryan J. Putman, Neal Hengge, Charles D. Miller Jan 2017

Biomanufacturing Through Igem-An International Student Competition, Asif Rahman, Ryan J. Putman, Neal Hengge, Charles D. Miller

Biological Engineering Faculty Publications

The foundations of synthetic biology are built on molecular biology and genetic engineering. One of the purposes of synthetic biology is to make biology easier to engineer by the creation of standardized biological parts and devices. There are a wide range of potential applications for synthetic biology and a variety of approaches to constructing parts and systems. Undergraduate Science, Technology, Engineering, and Mathematics (STEM) students from around the world apply synthetic biology principles at the annual International Genetically Engineered Machine (iGEM) competition to demonstrate functioning biological systems created from standardized parts. The iGEM competition will continue to add to the …


Qualitative Analysis Of Microbial Dynamics During Anaerobic Digestion Of Microalgal Biomass In A Uasb Reactor, Anna Doloman, Yousef Soboh, Andrew J. Walters, Ronald C. Sims, Charles D. Miller Jan 2017

Qualitative Analysis Of Microbial Dynamics During Anaerobic Digestion Of Microalgal Biomass In A Uasb Reactor, Anna Doloman, Yousef Soboh, Andrew J. Walters, Ronald C. Sims, Charles D. Miller

Biological Engineering Faculty Publications

Anaerobic digestion (AD) is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogen mcrA gene specific and universal bacterial primers. Analysis of the …


Importance Of Heat And Pressure For Solubilization Of Recombinant Spider Silk Proteins In Aqueous Solution, Justin A. Jones, Thomas I. Harris, Paula F. Oliveira, Brianne E. Bell, Abdulrahman Alhabib, Randolph V. Lewis Nov 2016

Importance Of Heat And Pressure For Solubilization Of Recombinant Spider Silk Proteins In Aqueous Solution, Justin A. Jones, Thomas I. Harris, Paula F. Oliveira, Brianne E. Bell, Abdulrahman Alhabib, Randolph V. Lewis

Biology Faculty Publications

The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution …


The Use Of Microfluidics And Dielectrophoresis For Separation, Concentration, And Identification Of Bacteria, Cynthia Hanson, Michael Sieverts, Karen Tew, Annelise Dykes, Michaela Salisbury, Elizabeth Vargis Mar 2016

The Use Of Microfluidics And Dielectrophoresis For Separation, Concentration, And Identification Of Bacteria, Cynthia Hanson, Michael Sieverts, Karen Tew, Annelise Dykes, Michaela Salisbury, Elizabeth Vargis

Biological Engineering Faculty Publications

Traditional bacterial identification methods take one to two days to complete, relying on large bacteria colonies for visual identification. In order to decrease this analysis time in a cost-effective manner, a method to sort and concentrate bacteria based on the bacteria's characteristics itself is needed. One example of such a method is dielectrophoresis, which has been used by researchers to separate bacteria from sample debris and sort bacteria according to species. This work presents variations in which dielectrophoresis can be performed and their associated drawbacks and benefits specifically to bacterial identification. In addition, a potential microfluidic design will be discussed.


Development Of A Glucose-Powered Biobattery For Implantation And Use In Humans, Carson Sparks, Cody Maughan, Lucas Smith, Carson Sparks Jan 2016

Development Of A Glucose-Powered Biobattery For Implantation And Use In Humans, Carson Sparks, Cody Maughan, Lucas Smith, Carson Sparks

Research on Capitol Hill

With current demands for implantable electrical devices increasing, the need for a more stable and biocompatible source of power is becoming increasingly necessary. Several battery types and materials were evaluated. Ultimately, an abiotic biobattery was designed with the goal of implantation in the human body. Nafion, single-walled carbon nanotubes (SWCNTs), and gold were used to create an abiotic biobattery that is powered by glucose.

The SWCNTs were used to create the cathode, the gold was used to fabricate the anode, and the Nafion acted as the separator between the cathode and anode. A thin Nafion membrane was evaluated for overlaying …


Beyond The Fiber: Novel Spider Silk Coatings And Adhesives, Danielle A. Gaztambide, Breton A. Day Jan 2016

Beyond The Fiber: Novel Spider Silk Coatings And Adhesives, Danielle A. Gaztambide, Breton A. Day

Research on Capitol Hill

Natural spider silks have long been recognized for their combination of incredible strength and elasticity. Spider silk is more elastic than nylon, tougher than Kevlar, and stronger than steel by weight. Due to an inability to farm spiders, much work has been done to produce spider silks in transgenic hosts for large -scale production. Our work was done using recombinant spider silk proteins produced in transgenic goats and the bacteria E. coli.

More recently spider silks have also been recognized for their biocompatibility and lack of immunogenicity. Spider silks' incredible strength and ability to be implanted safely within the body …


Zeta Potential: Key To Harvesting Algae For Biofuels And Bioproducts, Celeste Hancock, Michael Flores Jan 2016

Zeta Potential: Key To Harvesting Algae For Biofuels And Bioproducts, Celeste Hancock, Michael Flores

Research on Capitol Hill

  • Algae is an effective and sustainable resource for creating a broad spectrum of bioproducts.
  • Scientists have found it challenging to harvest algae due to the difficulty of collecting algae when in an aqueous solution such as wastewater.
  • Rotating Algal Biofilm Reactors (RABRs) coated with carbon nanotubes have proved effective. The RABR floats in an aqueous environment and attracts charged algal particles in suspension.
  • The tendency for algae to favor suspension over coagulation occurs only when particles of algae are sufficiently charged. This charge can be measured by analyzing the electric potential at the interface between the surface of a particle …


Improved Production Of Promising Antioxidant, Resveratrol, In Escherichia Coli, Chad Skidmore Jan 2016

Improved Production Of Promising Antioxidant, Resveratrol, In Escherichia Coli, Chad Skidmore

Research on Capitol Hill

Resveratrol is a promising antioxidant natural product. Studies have shown that it is effective against heart disease, cancer, Alzheimer's disease, diabetes, and harmful UV rays. This health-benefiting molecule is present in plants such as peanuts, berries, and the skin of red grapes.

A growth time of 10 months makes Japanese knotweed an impractical source of resveratrol. A more efficient way to produce resveratrol has been found by using E. coli as tiny biological factories.


Arakniprint: 3d Printing Of Synthetic Spider Silk To Produce Biocompatible And Resorbable Biomaterials, Ashley Ruben, Brianne Bell, Chase Spencer, Craig Soelberg, Dan Gil, Thomas Harris, Richard Decker, Timothy A. Taylor, Randolph V. Lewis Jan 2016

Arakniprint: 3d Printing Of Synthetic Spider Silk To Produce Biocompatible And Resorbable Biomaterials, Ashley Ruben, Brianne Bell, Chase Spencer, Craig Soelberg, Dan Gil, Thomas Harris, Richard Decker, Timothy A. Taylor, Randolph V. Lewis

UCUR

No abstract provided.


Microbubble Assisted Polyhydroxybutyrate Production In Escherichia Coli, Kadriye Innan, Fulya Ay Sal, Asif Rahman, Ryan J. Putman, Foster A. Agblevor, Charles D. Miller Jan 2016

Microbubble Assisted Polyhydroxybutyrate Production In Escherichia Coli, Kadriye Innan, Fulya Ay Sal, Asif Rahman, Ryan J. Putman, Foster A. Agblevor, Charles D. Miller

Biological Engineering Faculty Publications

Background

One of the potential limitations of large scale aerobic Escherichia coli fermentation is the need for increased dissolved oxygen for culture growth and bioproduct generation. As culture density increases the poor solubility of oxygen in water becomes one of the limiting factors for cell growth and product formation. A potential solution is to use a microbubble dispersion (MBD) generating device to reduce the diameter and increase the surface area of sparged bubbles in the fermentor. In this study, a recombinantE. coli strain was used to produce polyhydroxybutyrate (PHB) under conventional and MBD aerobic fermentation conditions.

Results

In conventional …


Rational Design Of Rama-Labeled Nanoparticles For A Dual-Modaility, Light Scattering Immunoassay On A Polystyrene Seubstrate, Nathan D. Israelsen, Donald Wooley, Cynthia Hanson, Elizabeth Vargis Jan 2016

Rational Design Of Rama-Labeled Nanoparticles For A Dual-Modaility, Light Scattering Immunoassay On A Polystyrene Seubstrate, Nathan D. Israelsen, Donald Wooley, Cynthia Hanson, Elizabeth Vargis

Biological Engineering Faculty Publications

Background: Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to …


Transitioning The Benefits Of Algal Growth To The Byproducts Of Oil And Natural Gas Production, Alan Hodges, Tyler Gladwin, Cody Maxfield, Jonathan Wood Jan 2015

Transitioning The Benefits Of Algal Growth To The Byproducts Of Oil And Natural Gas Production, Alan Hodges, Tyler Gladwin, Cody Maxfield, Jonathan Wood

Research on Capitol Hill

No abstract provided.


Friction Coefficients For Dried Distillers Grains On Eight Structural Surfaces, G. C. Nyendu, S. Pflum, P. Schumacher, C. J. Bern, T. J. Brumm Jan 2014

Friction Coefficients For Dried Distillers Grains On Eight Structural Surfaces, G. C. Nyendu, S. Pflum, P. Schumacher, C. J. Bern, T. J. Brumm

Biological Engineering Faculty Publications

Static and dynamic coefficients of friction on structural surfaces play important roles in the power requirements and material selection for equipment used in handling and storing agricultural commodities. However, friction data on dried distillers grains with solubles (DDGS) is limited. Further, lack of a standardized method for determining friction coefficient on grain handling materials presents a challenge. This article describes studies carried out to determine the static coefficient of friction (•_s) and dynamic coefficient of friction (•_d) for corn DDGS at 10%, 8.2%, and 6.5% moisture content (all moistures are % wet basis) on eight structural surfaces: High-Density Polyethylene (HDPE), …


Metacom: Automated Data Processing And Analysis Of Metagenomic Community Sequences, Cody A. Tramp, Charles D. Miller Jan 2013

Metacom: Automated Data Processing And Analysis Of Metagenomic Community Sequences, Cody A. Tramp, Charles D. Miller

Browse all Datasets

Advances in next generation sequencing technology have allowed metagenomic researchers to study the composition of bacterial communities through analysis of the vast numbers of sequence reads that these technologies generate. It is not feasible to analyze and interpret this large amount of data manually and individual research groups must create automated scripts and programs to analyze this data. Here, we present MetaCom, a program that offers a common set of analysis and organizational tools that can be used by research groups in the analysis of environmental samples. MetaCom is an open-source software tool that can process next generation sequencing output, …


Selective Biochlorination Of Hydroxyquinolines By A Flavin-Dependent Halogenase, Fuchao Xu, Amanda Merkley, Dayu Yu, Jixun Zhan Oct 2010

Selective Biochlorination Of Hydroxyquinolines By A Flavin-Dependent Halogenase, Fuchao Xu, Amanda Merkley, Dayu Yu, Jixun Zhan

Biological Engineering Faculty Publications

Rdc2 is a flavin-dependent halogenase from Pochonia chlamydosporia. Through the introduction of a His6-tag to both the N- and C-termini, the isolation yield of Rdc2 from Escherichia coli using Ni-NTA affinity chromatography was increased by three-fold. In vitro reaction of Rdc2 and a flavin reductase (Fre) with seven different hydroxyquinolines revealed that 3-hydroxyquinoline (3), 5-hydroxyquinoline (5), 6-hydroxyquinoline (6), and 7-hydroxyquinoline (7) can be specifically halogenated. These products were prepared by incubating the corresponding substrates with IPTG-induced E. coli BL21(DE3)/Rdc2. They were respectively characterized as 3-hydroxy-4-chloroquinoline (3a), 5-hydroxy-6-chloroquinoline (5a), 5-chloro-6-hydroxyquinoline (6a), and 7-hydroxy-8-chloroquinoline (7a) by NMR and MS …


Pyrene Fate Affected By Humic Acid Amendment In Soil Slurry Systems, Y. Liang, D. Sorensen, Ronald C. Sims, Joan Mclean Jan 2008

Pyrene Fate Affected By Humic Acid Amendment In Soil Slurry Systems, Y. Liang, D. Sorensen, Ronald C. Sims, Joan Mclean

Biological Engineering Faculty Publications

Background

Humic acid (HA) has been found to affect the solubility, mineralization, and bound residue formation of polycyclic aromatic hydrocarbons (PAHs). However, most of the studies on the interaction between HA and PAH concentrated on one or two of the three phases. Few studies have provided a simple protocol to demonstrate the overall effects of HA on PAH distribution in soil systems for all three phases.

Methods

In this study, three doses of standard Elliott soil HA (ESHA), 15, 187.5, and 1,875 μg ESHA/g soil slurry, were amended to soil slurry systems. 14C-pyrene was added to the systems along …


Theory And Application Of Landfarming To Remediate Pahs And Mineral Oil Contaminated Sediments: Beneficial Reuse, J. Harmsen, W. Rulkens, Ronald C. Sims, P. Ritjema, A. Zweers Jan 2007

Theory And Application Of Landfarming To Remediate Pahs And Mineral Oil Contaminated Sediments: Beneficial Reuse, J. Harmsen, W. Rulkens, Ronald C. Sims, P. Ritjema, A. Zweers

Biological Engineering Faculty Publications

When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described using a multi-compartment model and first-order kinetics, in which three degradable fractions are distinguished; (1) rapid, (2) slowly, and (3) very slowly degradable. Using this model populated with data from long-term experiments (initiated in 1990), it is shown that time frames from years to decades can be necessary to clean the soil or sediment to obtain a target below …


Temperature Effect On Tert-Butyl Alcohol (Tba) Biodegradation Kinetics In Hyporheic Zone Soils, M. H. Greenwood, Ronald C. Sims, J. E. Mclean, W. J. Doucette Jan 2007

Temperature Effect On Tert-Butyl Alcohol (Tba) Biodegradation Kinetics In Hyporheic Zone Soils, M. H. Greenwood, Ronald C. Sims, J. E. Mclean, W. J. Doucette

Biological Engineering Faculty Publications

Background

Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature.

Methods

Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms.

Results

First order mineralization rate constants of TBA at 5°C, 15°C and 25°C were 7.84 ± 0.14 × 10-3, 9.07 ± 0.09 × 10-3, and 15.3 ± 0.3 …


Pyrene Mineralization By Mycobacterium Sp. Strain Kms In A Barley Rhizosphere, R. Child, C. Miller, Y. Liang, Ronald C. Sims, A. J. Anderson Jan 2007

Pyrene Mineralization By Mycobacterium Sp. Strain Kms In A Barley Rhizosphere, R. Child, C. Miller, Y. Liang, Ronald C. Sims, A. J. Anderson

Biological Engineering Faculty Publications

To determine whether the soil Mycobacterium isolate KMS would mineralize pyrene under rhizosphere conditions, a microcosm system was established to collect radioactive carbon dioxide released from the labeled polycyclic aromatic hydrocarbon. Microcosms were designed as sealed, flow-through systems that allowed the growth of plants. Experiments were conducted to evaluate mineralization of 14C-labeled pyrene in a sand amended with the polycyclic aromatic hydrocarbons degrading Mycobacterium isolate KMS, barley plants, or barley plants with roots colonized by isolate KMS. Mineralization was quantified by collecting the 14CO2 produced from 14C-labeled pyrene at intervals during the 10-d incubation period. Roots …


Beneficial Reuse And Sustainability: The Fate Of Organic Compounds In The Land-Applied Waste, M. R. Overcash, Ronald C. Sims, J. L. Sims, K. C. Nieman Jan 2005

Beneficial Reuse And Sustainability: The Fate Of Organic Compounds In The Land-Applied Waste, M. R. Overcash, Ronald C. Sims, J. L. Sims, K. C. Nieman

Biological Engineering Faculty Publications

Land application systems, also referred to as beneficial reuse systems, are engineered systems that have defined and permitted application areas based on site and waste characteristics to determine the land area size requirement. These terrestrial systems have orders of magnitude greater microbial capability and residence time to achieve decomposition and assimilation compared with aquatic systems. In this paper we focus on current information and information needs related to terrestrial fate pathways in land treatment systems. Attention is given to conventional organic chemicals as well as new estrogenic and pharmaceutical chemicals of commerce. Specific terrestrial fate pathways addressed include: decomposition, bound …


Bie6810 - Biochemical Engineering, Spring 2004, Ron Sims Jan 2004

Bie6810 - Biochemical Engineering, Spring 2004, Ron Sims

Biological and Irrigation Engineering - OCW

Biochemical processes, thermodynamics, and kinetics are used in the application of engineering principles to analyze, design, and develop processes using biocatalysts. Processes covered in the course include those that are involved in the formation of desirable compounds and products or in the transformation, or destruction of unwanted or toxic substances.