Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 80

Full-Text Articles in Engineering

Adjuvant Pluronic F68 Is Compatible With A Plant Root-Colonizing Probiotic, Pseudomonas Chlororaphis O6, Amanda R. Streeter, Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Anne J. Anderson, David W. Britt Dec 2023

Adjuvant Pluronic F68 Is Compatible With A Plant Root-Colonizing Probiotic, Pseudomonas Chlororaphis O6, Amanda R. Streeter, Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Anne J. Anderson, David W. Britt

Biological Engineering Faculty Publications

Plant probiotic bacteria are being increasingly used to maximize both the productivity and quality of field crops. Pseudomonas chlororaphis O6 (PcO6) is a plant root colonizer with probiotic activities. This bacterium produces an array of metabolites, including a group of phenazines that are functional in plant protection. The paper reports responses of PcO6 to a nonionic triblock copolymer surfactant, Pluronic F68. This Pluronic exhibits membrane "healing" activity and improves cryopreservation recovery in eukaryotic cells. The product is FDA-approved and is applied as an adjuvant in formulations used in agriculture, medicine, and biotechnology. Growth of PcO6 on …


Microbial Glycosylation Of Antitubercular Agent Chlorflavonin, Jie Ren, Jixun Zhan Nov 2023

Microbial Glycosylation Of Antitubercular Agent Chlorflavonin, Jie Ren, Jixun Zhan

Biological Engineering Faculty Publications

Flavonoids have shown health-benefiting properties, such as antioxidative and anti-inflammatory activities, and are commonly used as nutraceuticals and pharmaceuticals. Although flavonoids are predominantly identified from plants, several filamentous fungal species have also been reported to produce bioactive flavonoids, including chlorflavonin from Aspergillus candidus, a novel halogenated flavonoid with potent antifungal and antitubercular (anti-TB) activities. Unfortunately, the low water-solubility of this molecule may hinder its bioavailability. Glycosylation is an effective method to enhance the polarity of natural products and alter their physicochemical properties. This work focuses on the development of novel water-soluble chlorflavonin derivatives to combat the threat of drug-resistant …


Environmentally Friendly New Catalyst Using Waste Alkaline Solution From Aluminum Production For The Synthesis Of Biodiesel In Aqueous Medium, Sandro L. Barbosa, David Lee Nelson, Lucas Paconio, Moises Pedro, Wallans Torres Pio Dos Santos, Alexandre P. Wentx, Fernando L. P. Pessoa, Foster A. Agblevor, Daniel A. Bortoleto, Maria B. De Freitas-Marques, Lucas D. Zanatta Jun 2023

Environmentally Friendly New Catalyst Using Waste Alkaline Solution From Aluminum Production For The Synthesis Of Biodiesel In Aqueous Medium, Sandro L. Barbosa, David Lee Nelson, Lucas Paconio, Moises Pedro, Wallans Torres Pio Dos Santos, Alexandre P. Wentx, Fernando L. P. Pessoa, Foster A. Agblevor, Daniel A. Bortoleto, Maria B. De Freitas-Marques, Lucas D. Zanatta

Biological Engineering Faculty Publications

Red mud (RM) is composed of a waste alkaline solution (pH = 13.3) obtained from the production of alumina. It contains high concentrations of hematite (Fe2O3), goethite (FeOOH), gibbsite [Al(OH)3], a boehmite (AlOOH), anatase (Tetragonal–TiO2), rutile (Ditetragonal dipyramidal–TiO2), hydrogarnets [Ca3Al2(SiO4)3-x(OH)4x], quartz (SiO2), and perovskite (CaTiO3). It was shown to be an excellent catalytic mixture for biodiesel production. To demonstrate the value of RM, an environmentally friendly process of transesterification in aqueous medium using waste cooking oil …


Engineered Production Of Bioactive Polyphenolic O-Glycosides, Jie Ren, Caleb Don Barton, Jixun Zhan Apr 2023

Engineered Production Of Bioactive Polyphenolic O-Glycosides, Jie Ren, Caleb Don Barton, Jixun Zhan

Biological Engineering Faculty Publications

Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from …


What Drug Candidates Exist For Treating Covid-19 Variants?, Kolton Hauck Feb 2022

What Drug Candidates Exist For Treating Covid-19 Variants?, Kolton Hauck

Research on Capitol Hill

USU senior Kolton studies biological engineering and led this project with funding from a student grant. Kolton’s project has been mapping out all possible protein interactions from known SARS-CoV-2 variants and identifying possible drug treatments. Viruses function through these interactions between their proteins and the host cell’s proteins, and this project is especially valuable because the candidates identified are predicted to help treat all known variants, making them more likely to be effective against future mutations.Kolton’s interest in biological research stems from his own experience managing a genetic health disorder. Past medical research greatly benefited him, and he sees his …


Utilizing Nasa-Funded Biotechnology To Improve Resource Management On Earth And In Space, Tyler Wallentine Feb 2022

Utilizing Nasa-Funded Biotechnology To Improve Resource Management On Earth And In Space, Tyler Wallentine

Research on Capitol Hill

USU senior Tyler is a Peak Summer Research Fellow studying biological engineering. Nitrogen, essential in soil fertilizer for crops, is produced traditionally in a way that uses natural gas and produces CO2. Tyler’s project has been to apply methods developed by NASA for astronauts to conserve and reuse resources to create nitrogen using wastewater and bacteria. Using this method would not only take advantage of waste we already have, but doesn’t produce CO2 and contribute to pollution. Tyler hopes to become a chemical engineer in the space industry and credits his undergraduate research experience. “There’s something about having to obtain …


Can Cannibinoids Be Used To Prevent Lung Damage From Utah Air Pollution?, Emily Brothersen Feb 2022

Can Cannibinoids Be Used To Prevent Lung Damage From Utah Air Pollution?, Emily Brothersen

Research on Capitol Hill

USU senior Emily, a Mantua native, is an Honors student and Undergraduate Research Fellow. She studies Biological Engineering and has funded and led this project herself with multiple student grants. Emily has been investigating a way to study cell health that can help future researchers test treatments more quickly and affordably. She has used this method to research the potential of cannabinoids to help protect people from lung damage caused by pollution, an issue topical to Utah with our frequent inversions and growing medical cannabis industry. Emily has been involved in research throughout her time at USU and sees it …


Assessing Leachable Cytotoxicity Of 3d-Printed Polymers And Facile Detoxification Methods, Venkatakrishnan Rengarajan, Angela Clyde, Jefferson Pontsler, Jonathan Valiente, Adreann Peel, Yu Huang Jan 2022

Assessing Leachable Cytotoxicity Of 3d-Printed Polymers And Facile Detoxification Methods, Venkatakrishnan Rengarajan, Angela Clyde, Jefferson Pontsler, Jonathan Valiente, Adreann Peel, Yu Huang

Biological Engineering Faculty Publications

Additive manufacturing of polymers is gaining momentum in health care industries by providing rapid 3D printing of customizable designs. Yet, little is explored about the cytotoxicity of leachable toxins that the 3D printing process introduced into the final product. We studied three printable materials, which have various mechanical properties and are widely used in stereolithography 3D printing. We evaluated the cytotoxicity of these materials through exposing two fibroblast cell lines (human and mouse derived) to the 3D-printed parts, using overlay indirect contact assays. All the 3D-printed parts were measured toxic to the cells in a leachable manner, with flexible materials …


Reu Site: Stem For Plant Health, David W. Britt May 2021

Reu Site: Stem For Plant Health, David W. Britt

Funded Research Records

No abstract provided.


Deciphering And Engineering An Unprecedented Fungal Biosynthetic Pathway For Expanded Chemical Diversity In Flavonoids, Jixun Zhan Feb 2021

Deciphering And Engineering An Unprecedented Fungal Biosynthetic Pathway For Expanded Chemical Diversity In Flavonoids, Jixun Zhan

Funded Research Records

No abstract provided.


Discovery Of A Novel Analogue Of Fr901533 And The Corresponding Biosynthetic Gene Cluster From Streptosporangium Roseum No. 79089, Fuchao Xu, Yonghong Liang, Jie Ren, Siyuan Wang, Jixun Zhan Jul 2020

Discovery Of A Novel Analogue Of Fr901533 And The Corresponding Biosynthetic Gene Cluster From Streptosporangium Roseum No. 79089, Fuchao Xu, Yonghong Liang, Jie Ren, Siyuan Wang, Jixun Zhan

Biological Engineering Faculty Publications

FR901533 (1, also known as WS79089B), WS79089A (2), and WS79089C (3) are polycyclic aromatic natural products with promising inhibitory activity to endothelin-converting enzymes. In this work, we isolated five tridecaketide products from Streptosporangium roseum No. 79089, including 1-3, benaphthamycin (4) and a novel FR901533 analogue (5). The structure of 5 was characterized based on spectroscopic data. Compared to the major product 2, the new compound 5 has an additional hydroxyl group at C-12 and an extra methyl group at the 13-OH. The configuration of C-19 of these compounds …


Existing Empirical Kinetic Models In Biochemical Methane Potential (Bmp) Testing, Their Selection And Numerical Solution, Yehor Pererva, Charles D. Miller, Ronald C. Sims Jun 2020

Existing Empirical Kinetic Models In Biochemical Methane Potential (Bmp) Testing, Their Selection And Numerical Solution, Yehor Pererva, Charles D. Miller, Ronald C. Sims

Biological Engineering Faculty Publications

Biochemical Methane Potential (BMP) tests are a crucial part of feasibility studies to estimate energy recovery opportunities from organic wastes and wastewater. Despite the large number of publications dedicated to BMP testing and numerous attempts to standardize procedures, there is no “one size fits all” mathematical model to describe biomethane formation kinetic precisely. Importantly, the kinetics models are utilized for treatability estimation and modeling processes for the purpose of scale-up. A numerical computation approach is a widely used method to determine model coefficients, as a replacement for the previously used linearization approach. However, it requires more information for each model …


Isolation And Selective Glycosylation Of Antisalmonellal Anthraquinones From The Stem Bark Of Morinda Lucida Benth. (Rubiaceae), Napoleon A. Mfonku, James A. Mbah, Norbert Kodjio, Donatien Gatsing, Jixun Zhan May 2020

Isolation And Selective Glycosylation Of Antisalmonellal Anthraquinones From The Stem Bark Of Morinda Lucida Benth. (Rubiaceae), Napoleon A. Mfonku, James A. Mbah, Norbert Kodjio, Donatien Gatsing, Jixun Zhan

Biological Engineering Faculty Publications

In this work we report the isolation, identification and antibacterial activity of two anthraquinones, 2-hydroxy-1-methoxyanthraquinone (1) and 2,5-dihydroxy-1-methoxy-6-methoxymethylanthraquinone (2), from the stem bark of Morinda lucida. These two natural products were selectively converted into two new glycosylated derivatives, 2-hydroxy-1-methoxyanthraquinone-4′-O-methyl-2-O-β-d-glucopyranoside (3) and 2,5-dihydroxy-1-methoxy-6-methoxymethylanthraquinone-4′-O-methyl-2-O-β-d-glucopyranoside (4) by the filamentous fungus Beauveria bassiana ATCC 7159. Structure elucidation was accomplished based on the 1D and 2D NMR, IR and mass spectra. The glycosylated compounds 3 and 4 showed higher in vitro antibacterial activity against Salmonella enterica subsp. enterica sérovars Typhimurim (MIC of 8 μg/mL each) than the corresponding aglycons 1 and 2 (MIC of …


Acute Mechanical Stress In Primary Porcine Rpe Cells Induces Angiogenic Factor Expression And In Vitro Angiogenesis, Farhad Farjood, Amir Ahmadpour, Sassan Ostvar, Elizabeth Vargis Apr 2020

Acute Mechanical Stress In Primary Porcine Rpe Cells Induces Angiogenic Factor Expression And In Vitro Angiogenesis, Farhad Farjood, Amir Ahmadpour, Sassan Ostvar, Elizabeth Vargis

Biological Engineering Faculty Publications

Background

Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration. CNV is characterized by new blood vessel growth and subretinal fluid accumulation, which results in mechanical pressure on retinal pigment epithelial (RPE) cells. The overexpression of RPE-derived angiogenic factors plays an important role in inducing CNV. In this work, we investigated the effect of mechanical stress on the expression of angiogenic factors in porcine RPE cells and determined the impact of conditioned medium on in-vitro angiogenesis.

Results

The goal of this study was to determine whether low levels of acute mechanical stress during early …


Initial Development Of Corn Seedlings After Seed Priming With Nanoscale Synthetic Zinc Oxide, Michel Esper Neto, David W. Britt, Lorena Moreira Lara, Anthony Cartwright, Rayssa Fernanda De Santos, Tadeu Takeyoshi Inoue, Marcelo Augusto Batista Feb 2020

Initial Development Of Corn Seedlings After Seed Priming With Nanoscale Synthetic Zinc Oxide, Michel Esper Neto, David W. Britt, Lorena Moreira Lara, Anthony Cartwright, Rayssa Fernanda De Santos, Tadeu Takeyoshi Inoue, Marcelo Augusto Batista

Biological Engineering Faculty Publications

Nanofertilizers are increasingly explored for sustainable micronutrient delivery in agriculture. Pre-treating seeds with nanofertilizers prior to planting (i.e., seed priming) reduces concerns about nanoparticle (NP) fertilizer non-target dispersion; however, priming formulations and concentrations must be carefully selected to avoid germination inhibition and toxicity. Here we investigate changes in corn seed germination and seedling development after seed priming with ZnO NPs, ZnO bulk and ZnCl2. To evaluate the effects sterile seeds were immersed in priming solutions of 0, 20, 40, 80, 160 mg L−1 Zn for the three Zn sources. Following an 8 h priming the seeds were …


Development Of A Low-Cost, Open Source Miniature Rotary Cell Culture System To Simulate Microgravity Within An Irradiated Environment, Elizabeth Vargis, Jr Dennison Dec 2019

Development Of A Low-Cost, Open Source Miniature Rotary Cell Culture System To Simulate Microgravity Within An Irradiated Environment, Elizabeth Vargis, Jr Dennison

Browse all Datasets

A major challenge for astronauts in long-duration space travel is combatting the hazardous spaceflight environment caused by microgravity and increased levels of ionizing radiation. Microgravity damages cellular DNA by increasing the production of harmful reactive oxygen species, while ionizing radiation damages DNA by creating double-stranded DNA (dsDNA) breaks. Cellular damage due to microgravity and radiation has been investigated using ground-based models, but most models consider microgravity and ionizing radiation alone, or asynchronously. Synchronous modeling better mimics spaceflight conditions and can be used to understand the combined effects of microgravity and ionizing radiation. However, commercially available devices to model microgravity and …


Monitoring Silane Sol-Gel Kinetics With In-Situ Optical Turbidity Scanning And Dynamic Light Scattering, Abul Bashar Mohammad Giasuddin, David W. Britt Aug 2019

Monitoring Silane Sol-Gel Kinetics With In-Situ Optical Turbidity Scanning And Dynamic Light Scattering, Abul Bashar Mohammad Giasuddin, David W. Britt

Biological Engineering Faculty Publications

Organosilanes (e.g., R’-SiOR3) provide hydrophobic functionality in thin-film coatings, porous gels, and particles. Compared with tetraalkoxysilanes (SiOR4), organosilanes exhibit distinct reaction kinetics and assembly mechanisms arising from steric and electronic properties of the R’ group on the silicon atom. Here, the hydrolysis and condensation pathways of n-propyltrimethoxy silane (nPM) and a tri-fluorinated analog of nPM, 3,3,3-trifluoropropyl trimethoxy silane (3F), were investigated under aqueous conditions at pH 1.7, 2.0, 3.0, and 4.0. Prior to hydrolysis, 3F and nPM are insoluble in water and form a lens at the bottom (3F) or top (nPM) of the solutions. This …


Workshop On Convergence In Biological Engineering, Keith Roper Aug 2019

Workshop On Convergence In Biological Engineering, Keith Roper

Funded Research Records

No abstract provided.


Application Of Micro-Scale 3d Printing In Pharmaceutics, Andrew Kjar, Yu Huang Aug 2019

Application Of Micro-Scale 3d Printing In Pharmaceutics, Andrew Kjar, Yu Huang

Biological Engineering Faculty Publications

3D printing, as one of the most rapidly-evolving fabrication technologies, has released a cascade of innovation in the last two decades. In the pharmaceutical field, the integration of 3D printing technology has offered unique advantages, especially at the micro-scale. When printed at a micro-scale, materials and devices can provide nuanced solutions to controlled release, minimally invasive delivery, high-precision targeting, biomimetic models for drug discovery and development, and future opportunities for personalized medicine. This review aims to cover the recent advances in this area. First, the 3D printing techniques are introduced with respect to the technical parameters and features that are …


Discovery And Engineering Of An Endophytic Pseudomonas Strain From Taxus Chinensis For Efficient Production Of Zeaxanthin Diglucoside, Ozkan Fidan, Jixun Zhan Aug 2019

Discovery And Engineering Of An Endophytic Pseudomonas Strain From Taxus Chinensis For Efficient Production Of Zeaxanthin Diglucoside, Ozkan Fidan, Jixun Zhan

Biological Engineering Faculty Publications

Background

Endophytic microorganisms are a rich source of bioactive natural products. They are considered as promising biofertilizers and biocontrol agents due to their growth-promoting interactions with the host plants and their bioactive secondary metabolites that can help manage plant pathogens. Identification of new endophytes may lead to the discovery of novel molecules or provide new strains for production of valuable compounds.

Results

In this study, we isolated an endophytic bacterium from the leaves of Taxus chinensis, which was identified as Pseudomonas sp. 102515 based on the 16S rRNA gene sequence and physiological characteristics. Analysis of its secondary metabolites revealed …


Modified Substrate Specificity Of A Methyltransferase Domain By Protein Insertion Into An Adenylation Domain Of The Bassianolide Synthetase, Fuchao Xu, Russell Butler, Kyle M. May, Megi Rexhepaj, Dayu Yu, Jiachen Zi, Yi Chen, Yonghong Liang, Jia Zeng, Joan Hevel, Jixun Zhan Jul 2019

Modified Substrate Specificity Of A Methyltransferase Domain By Protein Insertion Into An Adenylation Domain Of The Bassianolide Synthetase, Fuchao Xu, Russell Butler, Kyle M. May, Megi Rexhepaj, Dayu Yu, Jiachen Zi, Yi Chen, Yonghong Liang, Jia Zeng, Joan Hevel, Jixun Zhan

Chemistry and Biochemistry Faculty Presentations

Background: Creating designer molecules using a combination of select domains from polyketide synthases and/or nonribosomal peptide synthetases (NRPS) continues to be a synthetic goal. However, an incomplete understanding of how protein-protein interactions and dynamics affect each of the domain functions stands as a major obstacle in the field. Of particular interest is understanding the basis for a class of methyltransferase domains (MT) that are found embedded within the adenylation domain (A) of fungal NRPS systems instead of in an end-to-end architecture.

Results: The MT domain from bassianolide synthetase (BSLS) was removed and the truncated enzyme BSLS-ΔMT was recombinantly expressed. The …


Unravel The Cellular Biophysical Dynamics Of Spatial Constraint-Induced Membrane Blebbing And 3d Migration Using A Microfluidic Platform And Data-Driven Mathematical Modeling, Yu Huang Jun 2019

Unravel The Cellular Biophysical Dynamics Of Spatial Constraint-Induced Membrane Blebbing And 3d Migration Using A Microfluidic Platform And Data-Driven Mathematical Modeling, Yu Huang

Funded Research Records

No abstract provided.


Improved Production Of Antifungal Angucycline Sch47554 By Manipulating Three Regulatory Genes In Streptomyces Sp. Scc-2136, Ozkan Fidan, Riming Yan, Du Zhu, Jixun Zhan Apr 2019

Improved Production Of Antifungal Angucycline Sch47554 By Manipulating Three Regulatory Genes In Streptomyces Sp. Scc-2136, Ozkan Fidan, Riming Yan, Du Zhu, Jixun Zhan

Biological Engineering Faculty Publications

Sch47554 and Sch47555 are two angucyclines with antifungal activities against various yeasts and dermatophytes from Streptomyces sp. SCC‐2136. The schgene cluster contains several putative regulatory genes. Both schA4 and schA21were predicted as the TetR family transcriptional regulators, whereas schA16shared significant similarity to the AraC family transcriptional regulators. Although Sch47554 is the major product of Streptomyces sp. SCC‐2136, its titer is only 6.72 mg/L. This work aimed to increase the production of this promising antifungal compound by investigating and manipulating the regulatory genes in the Sch47554 biosynthetic pathway. Disruption of schA4and schA16 led to a significant increase …


Use Of Surface-Enhanced Raman Scattering (Sers) Probes To Detect Fatty Acid Receptor Activity In A Microfluidic Device, Han Zhang, Wei Zhang, Lifu Xiao, Yan Liu, Timothy A. Gilbertson, Anhong Zhou Apr 2019

Use Of Surface-Enhanced Raman Scattering (Sers) Probes To Detect Fatty Acid Receptor Activity In A Microfluidic Device, Han Zhang, Wei Zhang, Lifu Xiao, Yan Liu, Timothy A. Gilbertson, Anhong Zhou

Biological Engineering Faculty Publications

In this study, 4-mercaptobenzoic acid (MBA)-Au nanorods conjugated with a GPR120 antibody were developed as a highly sensitive surface-enhanced Raman spectroscopy (SERS) probe, and were applied to detect the interaction of fatty acids (FA) and their cognate receptor, GPR120, on the surface of human embryonic kidney cells (HEK293-GPRR120) cultured in a polydimethylsiloxane (PDMS) microfluidic device. Importantly, the two dominant characteristic SERS peaks of the Raman reporter molecule MBA, 1078 cm−1 and 1581 cm−1, do not overlap with the main Raman peaks from the PDMS substrate when the appropriate spectral scanning range is selected, which effectively avoided the …


Develop A 3d Neurological Disease Model Of Human Cortical Glutamatergic Neurons Using Micropillar-Based Scaffolds, Cheng Chen, Xin Dong, Kai-Heng Fang, Fang Yuan, Yao Hu, Min Xu, Yu Huang, Xixiang Zhang, Danjun Fang, Yan Liu Mar 2019

Develop A 3d Neurological Disease Model Of Human Cortical Glutamatergic Neurons Using Micropillar-Based Scaffolds, Cheng Chen, Xin Dong, Kai-Heng Fang, Fang Yuan, Yao Hu, Min Xu, Yu Huang, Xixiang Zhang, Danjun Fang, Yan Liu

Biological Engineering Faculty Publications

Establishing an effective three-dimensional (3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane (PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells. In comparison with the 2D culture, we demonstrated that the developed 3D culture promoted the maturation of human cortical glutamatergic neurons by showing significantly more MAP2 and less Ki67 expression. Based on this 3D culture …


Muscle Atrophy Marker Expression Differs Between Rotary Cell Culture System And Animal Studies, Charles P. Harding, Elizabeth Vargis Feb 2019

Muscle Atrophy Marker Expression Differs Between Rotary Cell Culture System And Animal Studies, Charles P. Harding, Elizabeth Vargis

Biological Engineering Faculty Publications

Muscular atrophy, defined as the loss of muscle tissue, is a serious issue for immobilized patients on Earth and for humans during spaceflight, where microgravity prevents normal muscle loading. In vitro modeling is an important step in understanding atrophy mechanisms and testing countermeasures before animal trials. The most ideal environment for modeling must be empirically determined to best mimic known responses in vivo. To simulate microgravity conditions, murine C2C12 myoblasts were cultured in a rotary cell culture system (RCCS). Alginate encapsulation was compared against polystyrene microcarrier beads as a substrate for culturing these adherent muscle cells. Changes after culture …


Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan Oct 2018

Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan

Biological Engineering Faculty Publications

A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6'-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8'-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane and 1,3-dihydroxyphenyl-5-cis-10'-heptadecene, respectively, …


Novel Devices For Studying Acute And Chronic Mechanical Stress In Retinal Pigment Epithelial Cells, Farhad Farjood, Elizabeth Vargis Oct 2018

Novel Devices For Studying Acute And Chronic Mechanical Stress In Retinal Pigment Epithelial Cells, Farhad Farjood, Elizabeth Vargis

Biological Engineering Faculty Publications

Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration (AMD). Overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic protein, by retinal pigment epithelial (RPE) cells is a key stimulator of CNV. Mechanical stress occurs during different stages of AMD and is a possible inducer of VEGF expression in RPE cells. However, robust and realistic approaches to studying acute and chronic mechanical stress under various AMD stages do not exist.The majority of previous work has studied cyclic stretching of RPE cells grown on flexible substrates, but an ideal model must be able to …


Hydrodeoxygenation Of Aqueous Phase Catalytic Pyrolysis Oil To Liquid Hydrocarbons Using Multi-Functional Nickel Catalyst, Hossein Jahromi, Foster A. Agblevor Sep 2018

Hydrodeoxygenation Of Aqueous Phase Catalytic Pyrolysis Oil To Liquid Hydrocarbons Using Multi-Functional Nickel Catalyst, Hossein Jahromi, Foster A. Agblevor

Biological Engineering Faculty Publications

Herein we investigated the hydrodeoxygenation (HDO) of aqueous phase pinyon-juniper catalytic pyrolysis oil (APPJCPO) using a new multifunctional red mud-supported nickel (Ni/RM) catalyst. The organic liquid yield after HDO of APPJCPO using 30 wt. % Ni/RM at reaction temperature of 350 °C was 47.8 wt. % with oxygen content of 1.14 wt. %. The organic liquid fraction consisted of aliphatics, aromatics, and alkylated aromatic hydrocarbons as well as small amounts of oxygenates. The RM support catalyzed ketonization of carboxylic acids. The Ni metal catalyzed partial reduction of oxygenates that underwent carbonyl alkylation with aldehydes and ketones on the RM. Catalyst …


An Efficient Process For Co-Production Of Γ-Aminobutyric Acid And Probiotic Bacillus Subtilis Cells, Hongbo Wang, Jinge Huang, Lei Sun, Fuchao Xu, Wei Zhang, Jixun Zhan Sep 2018

An Efficient Process For Co-Production Of Γ-Aminobutyric Acid And Probiotic Bacillus Subtilis Cells, Hongbo Wang, Jinge Huang, Lei Sun, Fuchao Xu, Wei Zhang, Jixun Zhan

Biological Engineering Faculty Publications

This study was to establish an integrated process for the co-production of γ-aminobutyric acid (GABA) and live probiotics. Six probiotic bacteria were screened and Bacillus subtilis ATCC 6051 showed the highest GABA-producing capacity. The optimal temperature and initial pH value for GABA production in B. subtilis were found to be 30 °C and 8.0, respectively. A variety of carbon and nitrogen sources were tested, and potato starch and peptone were the preferred carbon and nitrogen sources for GABA production, respectively. The concentrations of carbon source, nitrogen source and substrate (sodium L-glutamate) were then optimized using the response surface methodology. The …