Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour Oct 2017

Solar Eclipse Induced Atmospheric Turbulence Effects On High Altitude Balloons, Fnu Anamika, Denise Buckner, Peter Henson, Jennifer Fowler, Nanette Valentour

2017 Academic High Altitude Conference

The North Dakota Atmospheric Education Student Initiated Research (ND-AESIR) team launched a balloon during the total solar eclipse in Rexburg, Idaho. After the umbra’s passage, the balloon experienced unexpectedly high levels of atmospheric turbulence. Video footage taken from the payload displays the conditions, and analysis of flight path data models created from the iridium GPS confirm that unusually violent turbulence occurred. These forces caused the key rings holding the bottom of the parachute to the payload train to rip open; the balloon and parachute flew away and the payloads free fell to the surface from an altitude of 68,301 feet. …


Placing A High-Altitude Balloon In The Path Of Totality, Nicholas Jordan, Christopher Helmerich Oct 2017

Placing A High-Altitude Balloon In The Path Of Totality, Nicholas Jordan, Christopher Helmerich

2017 Academic High Altitude Conference

The UAH Space Hardware Club had conducted 70 flights prior to the Eclipse. In this time, we have gained valuable skills and experience which we have put into practice and passed on through the years. We put these skills into practice for the Eclipse. Our first challenge was finding where to launch. We started out by looking for suitable locations inside totality. We also examined a map of totality at 80,000 ft. We then ran predictions based on past weather during that time of year. By compiling multiple past predictions, we eliminated possible launch sites. We had multiple payloads, some …


Unmanned Aerial Systems For Monitoring Trace Tropospheric Gases, Travis J. Schuyler, Marcelo I. Guzman Oct 2017

Unmanned Aerial Systems For Monitoring Trace Tropospheric Gases, Travis J. Schuyler, Marcelo I. Guzman

Chemistry Faculty Publications

The emission of greenhouse gases (GHGs) has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes(UASs) can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the …


Improved Ballistic Wind Prediction Using Projectile Tracking Data, William Arthur Kenney Jul 2017

Improved Ballistic Wind Prediction Using Projectile Tracking Data, William Arthur Kenney

Computational Modeling & Simulation Engineering Theses & Dissertations

The United States Air Force AC-130 gunships have been in operation since the Vietnam War and have seen frequent use during recent conflicts. They are able to employ gun weapon systems from above a target in a way that maximizes possible time on target. When firing, the gun operators must deal with miss distances caused by winds acting on the projectile in flight. Operators currently perform a “tweak” to predict a ballistic wind affecting fired rounds which is then used in the fire-control to correct for the real winds and bring shots onto target. This correction, a single-point wind prediction, …


Ab Initio Computation Of Radiative Properties Of Monatomic Hydrogen, Fanny Thomas May 2017

Ab Initio Computation Of Radiative Properties Of Monatomic Hydrogen, Fanny Thomas

Doctoral Dissertations and Master's Theses

With renewed interest in planetary atmospheric entry, descent, and landing, NASA has noted a need for improved physics modeling in computational fluid dynamics. Uncertainty in experimental data used in radiation heat transfer computations leads to “over-engineering” of entry body heat shields, at large weight and cost penalties. There is interest in developing hypersonic thermophysics models from the known “first principles” of physics.

A method for computing high temperature gas emissivity and absorptivity from quantum mechanics principles is developed. The Schroedinger wave equation is cast as a discretized matrix eigenvalue problem which is solved using the ERAU parallel supercomputer. The numerical …


Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman Apr 2017

Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic activities contribute benzene, toluene, and anisole to the environment, which in the atmosphere are converted into the respective phenols, cresols, and methoxyphenols by fast gas-phase reaction with hydroxyl radicals (HO(•)). Further processing of the latter species by HO(•) decreases their vapor pressure as a second hydroxyl group is incorporated to accelerate their oxidative aging at interfaces and in aqueous particles. This work shows how catechol, pyrogallol, 3-methylcatechol, 4-methylcatechol, and 3-methoxycatechol (all proxies for oxygenated aromatics derived from benzene, toluene, and anisole) react at the air-water interface with increasing O3(g) during τc ≈ 1 μs contact time and contrasts their …


A Predictor Analysis Framework For Surface Radiation Budget Reprocessing Using Design Of Experiments, Patricia Allison Quigley Apr 2017

A Predictor Analysis Framework For Surface Radiation Budget Reprocessing Using Design Of Experiments, Patricia Allison Quigley

Engineering Management & Systems Engineering Theses & Dissertations

Earth’s Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth’s surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1°x1° …


Nitrate Radicals And Biogenic Volatile Organic Compounds: Oxidation, Mechanisms And Organic Aerosol, Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Hermann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert Mclaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, Rahul A. Zaveri Feb 2017

Nitrate Radicals And Biogenic Volatile Organic Compounds: Oxidation, Mechanisms And Organic Aerosol, Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Hermann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert Mclaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, Rahul A. Zaveri

Chemistry Faculty Publications

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number …