Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Sensor-Based Human Activity Recognition Using Bidirectional Lstm For Closely Related Activities, Arumugam Thendramil Pavai Dec 2018

Sensor-Based Human Activity Recognition Using Bidirectional Lstm For Closely Related Activities, Arumugam Thendramil Pavai

Electronic Theses, Projects, and Dissertations

Recognizing human activities using deep learning methods has significance in many fields such as sports, motion tracking, surveillance, healthcare and robotics. Inertial sensors comprising of accelerometers and gyroscopes are commonly used for sensor based HAR. In this study, a Bidirectional Long Short-Term Memory (BLSTM) approach is explored for human activity recognition and classification for closely related activities on a body worn inertial sensor data that is provided by the UTD-MHAD dataset. The BLSTM model of this study could achieve an overall accuracy of 98.05% for 15 different activities and 90.87% for 27 different activities performed by 8 persons with 4 …


Design And Implementation Of A Domain Specific Language For Deep Learning, Xiao Bing Huang May 2018

Design And Implementation Of A Domain Specific Language For Deep Learning, Xiao Bing Huang

Theses and Dissertations

\textit {Deep Learning} (DL) has found great success in well-diversified areas such as machine vision, speech recognition, big data analysis, and multimedia understanding recently. However, the existing state-of-the-art DL frameworks, e.g. Caffe2, Theano, TensorFlow, MxNet, Torch7, and CNTK, are programming libraries with fixed user interfaces, internal representations, and execution environments. Modifying the code of DL layers or data structure is very challenging without in-depth understanding of the underlying implementation. The optimization of the code and execution in these tools is often limited and relies on the specific DL computation graph manipulation and scheduling that lack systematic and universal strategies. Furthermore, …


Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels Apr 2018

Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels

SMU Data Science Review

In this paper, we present a comparative evaluation of deep learning approaches to network intrusion detection. A Network Intrusion Detection System (NIDS) is a critical component of every Internet connected system due to likely attacks from both external and internal sources. A NIDS is used to detect network born attacks such as Denial of Service (DoS) attacks, malware replication, and intruders that are operating within the system. Multiple deep learning approaches have been proposed for intrusion detection systems. We evaluate three models, a vanilla deep neural net (DNN), self-taught learning (STL) approach, and Recurrent Neural Network (RNN) based Long Short …


Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai Jan 2018

Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai

Research outputs 2014 to 2021

For robots to attain more general-purpose utility, grasping is a necessary skill to master. Such general-purpose robots may use their perception abilities to visually identify grasps for a given object. A grasp describes how a robotic end-effector can be arranged to securely grab an object and successfully lift it without slippage. Traditionally, grasp detection requires expert human knowledge to analytically form the task-specific algorithm, but this is an arduous and time-consuming approach. During the last five years, deep learning methods have enabled significant advancements in robotic vision, natural language processing, and automated driving applications. The successful results of these methods …


Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz Jan 2018

Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz

Theses and Dissertations--Computer Science

Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree …