Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng Jan 2023

Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng

Mechanical & Aerospace Engineering Faculty Publications

Electroosmosis is one of the most used actuation mechanisms for the microfluidics in the current active lab-on-chip devices. It is generated on the induced charged microchannel walls in contact with an electrolyte solution. Electrode distribution plays the key role on providing the external electric field for electroosmosis, and determines the performance of electroosmotic microfluidics. Therefore, this paper proposes a topology optimization approach for the electrodes of electroosmotic microfluidics, where the electrode layout on the microchannel wall can be determined to achieve designer desired microfluidic performance. This topology optimization is carried out by implementing the interpolation of electric insulation and electric …


Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang Jan 2023

Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) is of utmost significance due to its numerous practical uses in controlling flow at micro/nanoscales. In the present study, the time-periodic EOF of a viscoelastic fluid is statistically analyzed using a short 10:1 constriction microfluidic channel joining two reservoirs on either side. The flow is modeled using the Oldroyd-B (OB) model and the Poisson-Boltzmann model. The EOF of a highly concentrated polyacrylamide (PAA) aqueous solution is investigated under the combined effects of an alternating current (AC) electric field and a direct current (DC) electric field. Power-law degradation is visible in the energy spectra of the velocity fluctuations …


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan Jan 2021

Dynamic Behavior And Interactions Of Ferrofluid Droplets Under Magnetic Fields In Low Reynolds Number Flows, Md Rifat Hassan

Doctoral Dissertations

Digital microfluidics in combination with emulsion microfluidics are crucial building blocks of droplet-based microfluidics, which are prevalent in a wide variety of industrial and biomedical applications, including polymer processing, food production, drug delivery, inkjet printing, and cell-based assays. Therefore, understanding the dynamics and interactions of droplets as well as the interactions between the droplets and solid surfaces are of great importance in order to improve the performance or product in these applications.

Recently, several studies in the literature have demonstrated the potential of magnetic fields in controlling the behavior of droplets in microscale; however, the fundamental mechanism behind the interesting …


Microfluidics Design Considering Hyperuniformity And Cell Transport In Flow For Improved Circulating Tumor Cell Capture Efficiency, Michael Clarence Hood Jan 2021

Microfluidics Design Considering Hyperuniformity And Cell Transport In Flow For Improved Circulating Tumor Cell Capture Efficiency, Michael Clarence Hood

Graduate Research Theses & Dissertations

Isolation of circulating tumor cells (CTCs) from patient derived blood samples for cancerdiagnostics and monitoring is challenging due to the extremely low CTC concentration. This thesis work evaluates the performance of passive microfluidics devices with different designs based on computational modeling. A new cell separation method is proposed based on velocity differentiation of varying cell sizes. All numerical studies were conducted in 2D based on a fluid structure interaction code where the fluid flow was solved based on the lattice Boltzmann method (LBM) implemented in Palabos, and the cell dynamics were simulated based on the molecular dynamics package LAMMPS, with …


Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang Jan 2020

Magnetic Control Of Transport Of Particles And Droplets In Low Reynolds Number Shear Flows, Jie Zhang

Doctoral Dissertations

“Magnetic particles and droplets have been used in a wide range applications including biomedicine, biological analysis and chemical reaction. The manipulation of magnetic microparticles or microdroplets in microscale fluid environments is one of the most critical processes in the systems and platforms based on microfluidic technology. The conventional methods are based on magnetic forces to manipulate magnetic particles or droplets in a viscous fluid.

In contrast to conventional magnetic separation method, several recent experimental and theoretical studies have demonstrated a different way to manipulate magnetic non-spherical particles by using a uniform magnetic field in the microchannel. However, the fundamental mechanism …


Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna May 2018

Microfluidic Biosensor With Functionalized Gold Nano Particles On Interdigitated Electrodes, Bharath Babu Nunna

Dissertations

The integration of the microfluidics to the biosensor has growing demand with favorable conditions such as reduced processing time and low reagent consumption. The immuno biosensing with the microfluidic platform helped to make the electrochemical biosensing assays portable due to which this sensing mechanism can be easily implemented in point of care devices. The implementation of the biosensing in the microchannels significantly reduces the sample requirement form milli liter (mL) to micro liter (uL), and thus leads to low volume sample requirement during the sensing. The primary factors contributing to the microfluidic biosensors performance are probe immobilization, specific binding and …


Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo Dec 2016

Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo

Doctoral Dissertations

In electrochemical energy devices, including fuel cells, electrolyzers and batteries, the electrochemical reactions occur only on triple phase boundaries (TPBs). The boundaries provide the conductors for electros and protons, the catalysts for electrochemical reactions and the effective pathways for transport of reactants and products. The interfaces have a critical impact on the overall performance and cost of the devices in which they are incorporated, and therefore could be a key feature to optimize in order to turn a prototype into a commercially viable product. For electrolysis of water, proton exchange membrane electrolyzer cells (PEMECs) have several advantages compared to other …


Transient Cfd Simulations Of Pumping And Mixing Using Electromagnetic, Fangping Yuan Jan 2016

Transient Cfd Simulations Of Pumping And Mixing Using Electromagnetic, Fangping Yuan

Doctoral Dissertations

"In this dissertation, two dimensional and three dimensional, transient CFD simulations are conducted to investigate the active pumping and mixing in microfluidics driven by Electromagnetic/Lorentz force. Shallow disk/ring cylindrical microfluidic cell and shallow cuboid microfluidic cell with electrodes deposited on the bottom surface are modelled for mixing and pumping purposes respectively. By applying voltage across specific pair of electrodes, an ionic current is established in the weak conductive liquid present in the cell. The current interacts with an externally applied magnetic field generating a Lorentz force that causes fluid motion in the cell. Velocity vectors, electric potential distributions and ionic …


Direct Current Electrokinetic Particle Transport In Micro/Nano-Fluidics, Ye Ai Apr 2011

Direct Current Electrokinetic Particle Transport In Micro/Nano-Fluidics, Ye Ai

Mechanical & Aerospace Engineering Theses & Dissertations

Electrokinetics has been widely used to propel and manipulate particles in micro/nano-fluidics. The first part of this dissertation focuses on numerical and experimental studies of direct current (DC) electrokinetic particle transport in microfluidics, with emphasis on dielectrophoretic (DEP) effect. Especially, the electrokinetic transports of spherical particles in a converging-diverging microchannel and an L-shaped microchannel, and cylindrical algal cells in a straight microchannel have been numerically and experimentally studied. The numerical predictions are in quantitative agreement with our own and other researchers' experimental results. It has been demonstrated that the DC DEP effect, neglected in existing numerical models, plays an important …


Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian Jan 2007

Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian

Mechanical Engineering Faculty Research

RedOx-based magnetohydrodynamic MHD[1] flows in three-dimensional microfluidic channels are investigated theoretically with a coupled mathematical model consisting of the Nernst-Planck equations for the concentrations of ionic species, the local electroneutrality condition for the electric potential, and the Navier-Stokes equations for the flow field. A potential difference is externally applied across two planar electrodes positioned along the opposing walls of a microchannel that is filled with a dilute RedOx electrolyte solution, and a Faradaic current transmitted through the solution results. The entire device is positioned under a magnetic field which can be provided by either a permanent magnet or an electromagnet. …


Capillary-Driven Flows Along Rounded Interior Corners, Yongkang Chen, Mark M. Weislogel, Cory L. Nardin Nov 2006

Capillary-Driven Flows Along Rounded Interior Corners, Yongkang Chen, Mark M. Weislogel, Cory L. Nardin

Mechanical and Materials Engineering Faculty Publications and Presentations

The problem of low-gravity isothermal capillary flow along interior corners that are rounded is revisited analytically in this work. By careful selection of geometric length scales and through the introduction of a new geometric scaling parameter Tc, the Navier–Stokes equation is reduced to a convenient∼O(1) form for both analytic and numeric solutions for all values of corner half-angle α and corner roundedness ratio λ for perfectly wetting fluids. The scaling and analysis of the problem captures much of the intricate geometric dependence of the viscous resistance and significantly reduces the reliance on numerical data compared with several previous solution methods …