Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco Apr 2024

Benchmarking Of A Sco2 Heat Exchanger Flow Loop, David Velasco

Doctoral Dissertations and Master's Theses

Heat transfer of supercritical carbon dioxide (sCO2) was studied experimentally by commissioning a sCO2 flow loop featuring a horizontal tube-in-tube counterflow heat exchanger with a circular cross section. The main objective was to establish experimental heat transfer research capabilities for sCO2 at Embry-Riddle Aeronautical University’s (ERAU) Thermal Science Lab. sCO2 experiences a drastic change in thermophysical properties near its critical point that results in unique heat transfer characteristics. The high pressures at which sCO2 exists make the large gradients in thermophysical and transport properties difficult to study, experimentally and numerically. However, understanding the heat transfer characteristics and thermophysical behavior of …


Artificial Neural Network For Predicting Heat Transfer Rates In Supercritical Carbon Dioxide, Vinusha Dasarla Giri Babu Dec 2022

Artificial Neural Network For Predicting Heat Transfer Rates In Supercritical Carbon Dioxide, Vinusha Dasarla Giri Babu

Doctoral Dissertations and Master's Theses

Supercritical carbon dioxide as a working fluid in a closed Brayton cycle is proving to be more efficient than a conventional steam-based Rankine engine. Understanding the heat transfer properties of supercritical fluids is important for the design of a working engine cycle. The thermophysical properties of supercritical fluids tend to vary non-linearly near the pseudo-critical region. Traditionally, empirical correlations are used to calculate the heat transfer coefficient. It has been shown in the literature and within our own studies that these correlations provide inaccurate predictions near the pseudo-critical line, where heat transfer may be deteriorated or enhanced, resulting from strong …


Demonstration Of Clean Particle Seeding For Particle Image Velocimetry In A Closed Circuit Supersonic Wind Tunnel, Charles M. Mcniel Mar 2007

Demonstration Of Clean Particle Seeding For Particle Image Velocimetry In A Closed Circuit Supersonic Wind Tunnel, Charles M. Mcniel

Theses and Dissertations

The purpose of this research was to determine whether solid carbon dioxide (CO2) particles might provide a satisfactory, and cleaner, alternative to traditional seed material for Particle Image Velocimetry (PIV) for use in a closed circuit supersonic wind tunnel. The Air Force Institute of Technology (AFIT) closed circuit pressure-vacuum supersonic wind tunnel was utilized, which achieves a nominal Mach number of Mach 2.9 in a 2.5 inch by 2.5 inch square test section. CO2 was dispensed into the flow as a liquid from a standard compressed gas liquid tank through two different injector styles at two injection …


Particle Image Velocimetry Using A Novel, Non-Intrusive Particle Seeding, Charles J. Delapp Ii Jun 2006

Particle Image Velocimetry Using A Novel, Non-Intrusive Particle Seeding, Charles J. Delapp Ii

Theses and Dissertations

The purpose of this research effort was to study the use of non-intrusive particle seeding for Particle Image Velocimetry (PIV). Current seeding material and techniques involve the use of either solid particles or liquid mixtures which can contaminate or damage closed circuit wind tunnels, and in some cases can introduce a potential fire or explosive hazard. The proposed method is based on creating seed particles utilizing Carbon Dioxide (CO2). The CO2 would be dispensed into the flow as a liquid, immediately condensing to solid seed particles as they leave the spray nozzle. The advantage of using these particles is that …