Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 79

Full-Text Articles in Engineering

The Design And Implementation Of A Supersonic Indraft Tube Wind Tunnel For The Demonstration Of Supersonic Flows, Daniel Kenneth Johnson Jun 2018

The Design And Implementation Of A Supersonic Indraft Tube Wind Tunnel For The Demonstration Of Supersonic Flows, Daniel Kenneth Johnson

Master's Theses

Historically, the endeavor of scale testing flight vehicles at supersonic Mach numbers, especially for long durations, has required the development of closed-loop wind tunnels, which are extremely expensive both to build and operate due to the high complexity and incredible power required to drive such a system. The intermittent blowdown wind tunnel, indraft tunnel, and shock tunnel have alleviated many of these cost requirements to some degree, whilst facilitating testing at very high Mach numbers and enthalpies; however, these systems require the handling of gases at pressures and temperatures that can be prohibitive for many university settings. The Ludwieg tube …


Single Camera Photogrammetry Matlab Solver Developed For Automation Of The Oil Interferometry Process, Hunter Michael Dunn Jan 2018

Single Camera Photogrammetry Matlab Solver Developed For Automation Of The Oil Interferometry Process, Hunter Michael Dunn

Master's Theses

Over the last 20 years, Gregory G. Zilliac of the NASA AMES Research Center has been in continuous development of a fringe-imaging skin friction PC application used in oil interferometry analysis. This application, CXWIN5G, allows users to analyze propagation of oil smears across an aerodynamic surface using photogrammetry. The purpose of this thesis is to investigate the feasibility of increasing the level of automation currently found in CXWIN5G by developing a MATLAB solver capable of determining oil smear geometry with minimal user input.

There are two main automation goals of this thesis that are reflected in the core of the …


Manufacturing And Instrumentation Of An Open End Compressed Air Shock Tube, Josue O. Ruiz Dec 2017

Manufacturing And Instrumentation Of An Open End Compressed Air Shock Tube, Josue O. Ruiz

Master's Theses

Shock tubes have been used extensively to study shock wave structures and high speed flow features. The purpose of constructing this open end shock tube was to have the ability to produce shock waves in a laboratory setting but also understand the exit flow coming out which can be applied to future studies that are beyond the scope of this work. This undertaking would require that an open end shock tube be built and instrumented with PCB Integrated Circuit Piezoelectric (ICP) Pressure Sensor Model 113B24 that would then be connected to a PCB Model 482C05 Signal Conditioner with the purpose …


An Investigation Of Avian Wing Tip Vortex Generation Using A Biomimetic Approach, David Stewart Martin Jun 2017

An Investigation Of Avian Wing Tip Vortex Generation Using A Biomimetic Approach, David Stewart Martin

Master's Theses

An experimental study has been conducted to develop a process allowing the creation of biologically accurate aerodynamic test models mimicking the slotted primary feather geometry of the Brown Pelican (Pelecanus occidentalis). Preserved examples of both a full Brown Pelican wing and a single primary feather were 3D scanned and digitally reconstructed using a combination of MATLAB and CAD software. The final model was then 3D printed as a collection of smaller components using a LulzBot TAZ 6 printer and Taulman3D T-Glase PET filament. After using various surface finishing techniques to improve the finish of all 3D printed parts, …


Wing Deflection Analysis Of 3d Printed Wind Tunnel Models, Matthew G. Paul Jun 2017

Wing Deflection Analysis Of 3d Printed Wind Tunnel Models, Matthew G. Paul

Master's Theses

This work investigates the feasibility of producing small scale, low aerodynamic loading wind tunnel models, using FDM 3D printing methods, that are both structurally and aerodynamically representative in the wind tunnel. To verify the applicability of this approach, a 2.07% scale model of the NASA CRM was produced, whose wings were manufacturing using a Finite Deposition Modeling 3D printer. Experimental data was compared to numerical simulations to determine percent difference in wake distribution and wingtip deflection for multiple configurations.

Numerical simulation data taken in the form of CFD and FEA was used to validate data taken in the wind tunnel …


Actuator Disk Theory For Compressible Flow, Htet Htet Nwe Oo May 2017

Actuator Disk Theory For Compressible Flow, Htet Htet Nwe Oo

Master's Theses

Because compressibility effects arise in real applications of propellers and turbines, the Actuator Disk Theory or Froude’s Momentum Theory was established for compressible, subsonic flow using the three laws of conservation and isentropic thermodynamics. The compressible Actuator Disk Theory was established for the unducted (bare) and ducted cases in which the disk was treated as the only assembly within the flow stream in the bare case and enclosed by a duct having a constant cross-sectional area equal to the disk area in the ducted case. The primary motivation of the current thesis was to predict the ideal performance of a …


Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield Dec 2016

Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield

Master's Theses

An investigation was conducted into the feasibility of using an unconventional flight technique, asymmetric flight, to improve overall efficiency of solar aircraft. In this study, asymmetric flight is defined as steady level flight in a non-wings-level state in- tended to improve solar incidence angle. By manipulating aircraft orientation through roll angle, solar energy collection is improved but aerodynamic efficiency is worsened due to the introduction of additional trim drag. A point performance model was devel- oped to investigate the trade-off between improvement in solar energy collection and additional drag associated with asymmetric flight. A mission model with a focus on …


Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina Oct 2015

Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina

Master's Theses

Performance characterization was undertaken for an air augmented rocket mixing duct with annular cavity configurations intended to produce thrust augmentation. Three mixing duct geometries and a fully annular cavity at the exit of the nozzle were tested to enable thrust comparisons. The rocket engine used liquid ethanol and gaseous oxygen, and was instrumented with sensors to output total thrust, mixing duct thrust, combustion chamber pressure, and propellant differential pressures across Venturi flow measurement tubes.

The rocket engine was tested to thrust maximum, with three different mixing ducts, three major combustion pressure sets, and a nozzle exit plane annular cavity (a …


Development Of Cpanel, An Unstructured Panel Code, Using A Modified Tls Velocity Formulation, Christopher R. Satterwhite Sep 2015

Development Of Cpanel, An Unstructured Panel Code, Using A Modified Tls Velocity Formulation, Christopher R. Satterwhite

Master's Theses

The use of panel codes in the aerospace industry dates back many decades. Recent advances in computer capability have allowed them to evolve, both in speed and complexity, to provide very quick solutions to complex flow fields. By only requiring surface discretization, panel codes offer a faster alternative to volume based methods, delivering a solution in minutes, as opposed to hours or days. Despite their utility, the availability of these codes is very limited due to either cost, or rights restrictions.

This work incorporates modern software development practices, such as unit level testing and version control, into the development of …


Inlet Shape Considerations For Split-Wing Electric Distributed Propulsion, Kurt Vonderhaar Papathakis Jun 2015

Inlet Shape Considerations For Split-Wing Electric Distributed Propulsion, Kurt Vonderhaar Papathakis

Master's Theses

This thesis aims to uncover preliminary design relationships for an inlet of a split-wing electric distributed propulsion regional airliner. Several aspects of the inlet design were investigated, including: the overall thickness of the airfoil section with respect to the chord, inlet throat area, and lip radius. These parameters were investigated using several angles of attack and mass flow rates through the fan. Computational fluid dynamics, with a 2nd Order turbulence model was used and validated against World War II era data from NACA, as those studies were the most pertinent wind tunnel data available. Additionally, other works by Boeing, …


Validation Of A Cfd Approach For Gas Turbine Internal Cooling Passage Heat Transfer Prediction, Daniel G. Wilde Jun 2015

Validation Of A Cfd Approach For Gas Turbine Internal Cooling Passage Heat Transfer Prediction, Daniel G. Wilde

Master's Theses

This report describes the development and application of a validated Computational Fluid Dynamics (CFD) modelling approach for internal cooling passages in rotating turbomachinery. A CFD Modelling approach and accompanying assumptions are tuned and validated against academically available experimental results for various serpentine passages. Criteria of the CFD modelling approach selected for investigation into advanced internal cooling flows include accuracy, robustness, industry familiarity, and computational cost.

Experimental data from NASA HOST (HOt Section Technology), Texas A&M, and University of Manchester tests are compared to RANS CFD results generated using Fluent v14.5 in order to benchmark a CFD modelling approach.

Capability of …


Experimental Investigation Of Drag Reduction By Trailing Edge Tabs On A Square Based Bluff Body In Ground Effect, Scott R. Sawyer May 2015

Experimental Investigation Of Drag Reduction By Trailing Edge Tabs On A Square Based Bluff Body In Ground Effect, Scott R. Sawyer

Master's Theses

This thesis presents an experimental investigation of drag reduction devices on a bluff body in ground effect. It has previously been shown that the addition of end-plate tabs to a rectangular based bluff body with an aspect ratio of 4 is effective in eliminating vortex shedding and reducing drag for low Reynolds number flows. In the present study a square based bluff body, both with and without tabs, will be tested under the same conditions, except this time operating within proximity to a ground plane in order to mimic the properties of bounded aerodynamics that would be present for a …


Cold Flow Performance Of A Ramjet Engine, Harrison G. Sykes Dec 2014

Cold Flow Performance Of A Ramjet Engine, Harrison G. Sykes

Master's Theses

The design process and construction of the initial modular ramjet attachment to the Cal Poly supersonic wind tunnel is presented. The design of a modular inlet, combustor, and nozzle are studied in depth with the intentions of testing in the modular ramjet. The efforts undertaken to characterize the Cal Poly supersonic wind tunnel and the individual component testing of this attachment are also discussed. The data gathered will be used as a base model for future expansion of the ramjet facility and eventual hot fire testing of the initial components. Modularity of the inlet, combustion chamber, and nozzle will allow …


Effect Of Adaptive Tabs On Drag Of A Square-Base Bluff Body, Brian W. Barker Aug 2014

Effect Of Adaptive Tabs On Drag Of A Square-Base Bluff Body, Brian W. Barker

Master's Theses

This thesis involves the experimental wind tunnel testing of a 0.127m by 0.127m square-base bluff body to test the effectiveness of trailing edge tabulations to reduce drag in the Cal Poly 0.912m by 1.219 m low-speed wind tunnel. To accomplish this, the boundary layer was first measured on the trailing edge of the model for the three speeds at 10, 20, and 30 m/s, with Re = 8.3e4, 1.6e5 and 2.5e5 respectively, without the tabs. Three different tests were performed to determine the effectiveness of the tabs. These tests included base pressure measurements, total drag force measurements and hotwire velocity …


Experimental Investigation Of Active Wingtip Vortex Control Using Synthetic Jet Actuators, Peter J. Sudak Aug 2014

Experimental Investigation Of Active Wingtip Vortex Control Using Synthetic Jet Actuators, Peter J. Sudak

Master's Theses

An experiment was performed in the Cal Poly Mechanical Engineering 2x2 ft wind tunnel to quantify the effect of spanwise synthetic jet actuation (SJA) on the drag of a NACA 0015 semispan wing. The wing, which was designed and manufactured for this experiment, has an aspect ratio of 4.20, a span of 0.427 m (16.813”), and is built around an internal array of piezoelectric actuators, which work in series to create a synthetic jet that emanates from the wingtip in the spanwise direction. Direct lift and drag measurements were taken at a Reynolds Number of 100,000 and 200,000 using a …


On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman Mar 2014

On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman

Master's Theses

A new parametric model for the growth rate of turbulent mixing layers is proposed. A database of experimental and numerical mixing layer studies was extracted from the literature to support this effort. The domain of the model was limited to planar, spatial, nonreacting, free shear layers that were not affected by artificial mixing enhancement techniques. The model is split into two parts which were each tuned to optimally fit the database; equations for an incompressible growth rate were derived from the error function velocity profile, and a function for a compressibility factor was generalized from existing theory on the convective …


Flight And Stability Of A Laser Inertial Fusion Energy Target In The Drift Region Between Injection And The Reaction Chamber With Computational Fluid Dynamics, Tiffany Leilani Mitori Mar 2014

Flight And Stability Of A Laser Inertial Fusion Energy Target In The Drift Region Between Injection And The Reaction Chamber With Computational Fluid Dynamics, Tiffany Leilani Mitori

Master's Theses

A Laser Inertial Fusion Energy (LIFE) target’s flight through a low Reynolds number and high Mach number regime was analyzed with computational fluid dynamics software. This regime consisted of xenon gas at 1,050 K and approximately 6,670 Pa. Simulations with similar flow conditions were performed over a sphere and compared with experimental data and published correlations for validation purposes. Transient considerations of the developing flow around the target were explored. Simulations of the target at different velocities were used to determine correlations for the drag coefficient and Nusselt number as functions of the Reynolds number. Simulations with different target angles …


Adaptive Control Techniques For Transition-To-Hover Flight Of Fixed-Wing Uavs, Brian Decimo Marchini Dec 2013

Adaptive Control Techniques For Transition-To-Hover Flight Of Fixed-Wing Uavs, Brian Decimo Marchini

Master's Theses

Fixed-wing unmanned aerial vehicles (UAVs) with the ability to hover combine the speed and endurance of traditional fixed-wing fight with the stable hovering and vertical takeoff and landing (VTOL) capabilities of helicopters and quadrotors. This combination of abilities can provide strategic advantages for UAV operators, especially when operating in urban environments where the airspace may be crowded with obstacles. Traditionally, fixed-wing UAVs with hovering capabilities had to be custom designed for specific payloads and missions, often requiring custom autopilots and unconventional airframe configurations. With recent government spending cuts, UAV operators like the military and law enforcement agencies have been urging …


Computational And Experimental Comparison Of A Powered Lift, Upper Surface Blowing Configuration, Jay M. Marcos Nov 2013

Computational And Experimental Comparison Of A Powered Lift, Upper Surface Blowing Configuration, Jay M. Marcos

Master's Theses

In the past, 2D CFD analysis of Circulation Control technology have shown poor comparison with experimental results. In Circulation Control experiments, typical results show a relationship between lift coefficient, CL, vs blowing momentum coefficient, Cμ. CFD analysis tend to over-predict values of CL due to gridding issues and/or turbulence model selection. This thesis attempted to address both issues by performing Richardson’s Extrpolation method to determine an acceptable mesh size and by using FLUENT’s 2-equation turbulence models. The experimental results and CAD geometry were obtained from Georgia Tech Research Institute for comparison with the CFD analysis.

The study showed that 3D …


Qualitative Methods Used To Develop And Characterize The Circulation Control System On Cal Poly's Amelia, Eric N. Paciano Sep 2013

Qualitative Methods Used To Develop And Characterize The Circulation Control System On Cal Poly's Amelia, Eric N. Paciano

Master's Theses

The circulation control system onboard Cal Poly's Advanced Model for Extreme Lift and Improved Aeroacoustics was a critical component of a highly complex wind tunnel model produced in order to fulfill the requirements of a NASA Research Announcement awarded to David Marshall of the Aerospace Engineering Department. The model was based on a next generation, 150 passenger, regional, cruise efficient, short take-off and landing concept aircraft that achieved high lift through circulation control wings and over-the-wing mounted engines. The wind tunnel model was 10-ft in span, used turbine propulsion simulators, and had a functioning circulation control system driven from tunnel …


Microphone-Based Pressure Diagnostics For Boundary Layer Transition, Spencer Everett Lillywhite Jul 2013

Microphone-Based Pressure Diagnostics For Boundary Layer Transition, Spencer Everett Lillywhite

Master's Theses

An experimental investigation of the use low-cost microphones for unsteady total pressure measurement to detect transition from laminar to turbulent boundary layer flow has been conducted. Two small electret condenser microphones, the Knowles FG-23629 and the FG-23742, were used to measure the pressure fluctuations and considered for possible integration with an autonomous boundary layer measurement system. Procedures to determine the microphones’ maximum sound pressure levels and frequency response using an acoustic source provided by a speaker and a reference microphone. These studies showed that both microphones possess a very flat frequency response and that the max SPL of the FG-23629 …


Design And Performance Of Circulation Control Geometries, Rory Martin Golden Mar 2013

Design And Performance Of Circulation Control Geometries, Rory Martin Golden

Master's Theses

With the pursuit of more advanced and environmentally-friendly technologies of today’s society, the airline industry has been pushed further to investigate solutions that will reduce airport noise and congestion, cut down on emissions, and improve the overall performance of aircraft. These items directly influence airport size (runway length), flight patterns in the community surrounding the airport, cruise speed, and many other aircraft design considerations which are setting the requirements for next generation aircraft. Leading the research in this movement is NASA, which has set specific goals for the next generation regional airliners and has categorized the designs that meet the …


Confined Mixing Of Multiple Transverse Jets, Allen J. Bishop Dec 2012

Confined Mixing Of Multiple Transverse Jets, Allen J. Bishop

Master's Theses

The mixing performance of multiple transverse jets has been evaluated experimentally. Measurement techniques included laser Doppler velocimetry and planar laser induced fluorescence. Basic findings are consistent with results presented in literature for single jet mixing behavior. Mixing performance has been compared to literature for the single jet case and the Holdeman parameter has been re-evaluated for effectiveness at low jet numbers. A single jet in a confined crossflow was found to have a local minimum at B(d⁄D) = 0.721. Results for two jets indicate monotonically decreasing unmixedness for the range of conditions tested, with no local optimum apparent. Data for …


Distributed Forcing On A 3d Bluff Body With A Blunt Base, An Experimental Active Drag Control Approach, Ethan Bruce Erlhoff Dec 2012

Distributed Forcing On A 3d Bluff Body With A Blunt Base, An Experimental Active Drag Control Approach, Ethan Bruce Erlhoff

Master's Theses

This paper seeks to explore the effects of an active drag control method known as distributed forcing on a 3D bluff body with a blunt base. The 9.5 x 15.25 x 3 inch aluminum model constructed for this experiment has an elliptically shaped nose and rectangular aft section. The model is fitted with four, 12 Volt fans, forcing the freestream air into and out of 1 mm thick slots on the upper and lower trailing edges. The forcing is steady in time, held at a constant forcing velocity though all Reynolds numbers, but varies roughly sinusoidally in the spanwise direction …


Analysis Of A Goldschmied Propulsor Using Computational Fluid Dynamics Referencing California Polytechnic's Goldschmied Propulsor Testing, Cory A. Seubert Sep 2012

Analysis Of A Goldschmied Propulsor Using Computational Fluid Dynamics Referencing California Polytechnic's Goldschmied Propulsor Testing, Cory A. Seubert

Master's Theses

The Goldschmied Propulsor is a concept that was introduced in mid 1950's by Fabio Goldschmied. The concept combines boundary layer suction and boundary layer ingestion technologies to reduce drag and increase propulsor efficiency. The most recent testing, done in 1982, left questions concerning the validity of the results. To answer these questions a 38.5in Goldschmied Propulsor was constructed and tested in Cal Poly's 3x4ft wind tunnel. The focus of their wind tunnel investigation was to replicate Goldschmied's original testing and increase the knowledge base on the subject. The goal of this research was to create a computational fluid dynamics (CFD) …


Hot-Wire Anemometer For The Boundary Layer Data System, William D. Neumeister Jul 2012

Hot-Wire Anemometer For The Boundary Layer Data System, William D. Neumeister

Master's Theses

Hot-wire anemometry has been routinely employed for laboratory measurements of turbulence for decades. This thesis presents a hot-wire anemometer suitable for use with the Boundary Layer Data System (BLDS). BLDS provides a unique platform for in- flight measurements because of its small, self-contained, robust design and flexible architecture. Addition of a hot-wire anemometer would provide BLDS with a sensor that could directly measure flow velocity fluctuations caused by turbulence. Hot-wires are commonly operated in constant-temperature mode for high frequency response, but require a carefully tuned bridge. The constant-voltage anemometer (CVA) uses a simple op-amp circuit to improve frequency response over …


Experimental Investigation Of A 2-D Air Augmented Rocket: High Pressure Ratio And Transient Flow-Fields, Josef S. Sanchez Mar 2012

Experimental Investigation Of A 2-D Air Augmented Rocket: High Pressure Ratio And Transient Flow-Fields, Josef S. Sanchez

Master's Theses

A 2-D Air Augmented Rocket, the Cal Poly Air Augmented Rocket (CPAAR) Test Apparatus operating as a mixer-ejector was tested to investigate high stagnation pressure ratio and transient flow fields of an ejector. The primary rocket ejector was supplied with high pressure nitrogen at a maximum chamber pressure of 1758 psia and a maximum mass flow rate of 1.4 lb/s. The secondary flow air was entrained from a fixed volume plenum chamber producing pressures as low as 3.3 psia. The maximum total pressure ratio achieved was 221. The original CPAAR apparatus was rebuilt re-instrumented and capability expanded. A fixed volume …


Effect Of End-Plate Tabs On Drag Reduction Of A 3d Bluff Body With A Blunt Base, Jarred Michael Pinn Mar 2012

Effect Of End-Plate Tabs On Drag Reduction Of A 3d Bluff Body With A Blunt Base, Jarred Michael Pinn

Master's Theses

This thesis involves the experimental testing of a bluff body with a blunt base to evaluate the effectiveness of end-plate tabs in reducing drag. The bluff body is fitted with interchangeable end plates; one plate is flush with the rest of the exterior and the other plate has small tabs protruding perpendicularly into the flow. The body is tested in the Cal Poly 3ft x 4ft low speed wind tunnel. Testing is conducted in three phases.

The first phase was the hot-wire measurement of streamwise velocity of the near wake behind the bluff body. An IFA300 thermal anemometry system with …


Experimental Investigation Of Suction Slot Geometry On A Goldschmied Propulsor, Nicole M. Thomason Feb 2012

Experimental Investigation Of Suction Slot Geometry On A Goldschmied Propulsor, Nicole M. Thomason

Master's Theses

The Goldschmied Propulsor concept combines boundary layer suction and boundary layer ingestion to improve propulsive efficiency and reduce drag on an axisymmetric body. This investigation of a Goldschmied Propulsor aimed to determine influential characteristics of the suction slot geometry to aid in better slot geometry design and to decrease the suction flow requirements for maintaining attached flow over the entire model surface. The Propulsor model was 38.5 inches in length with a max diameter of 13.5 inches. Three suction slot geometries were investigated with the addition of aluminum cusps to the slot entrance. The cusps varied in the distance they …


Implementation And Validation Of The Ζ-F And Asbm Turbulence Models, Dustin Van Blaricom Quint Nov 2011

Implementation And Validation Of The Ζ-F And Asbm Turbulence Models, Dustin Van Blaricom Quint

Master's Theses

The use of Computational Fluid Dynamics (CFD) tools throughout the engineering industry has become standard. Simulations are used during nearly all steps throughout the life cycle of products including design, production, and testing. Due to their wide range of use, industrial CFD codes are becoming more flexible and easier to use. These commercial codes require robustness, reliability, and efficiency. Consequently, linear eddy viscosity models (LEVM) are used to model turbulence for an increasing number of flow types. LEVM such as k-ε and k-ω provide modeling with little loss of computational efficiency and have proven to be robust. The LEVM that …