Open Access. Powered by Scholars. Published by Universities.®

Science and Technology Studies Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Selected Works

Dr Lasantha G Meegahapola

Reactive

File Type

Articles 1 - 4 of 4

Full-Text Articles in Science and Technology Studies

Optimal Allocation Of Reactive Power Resources To Minimise Losses And Maintain System Security, Eknath Vittal, Lasantha Meegahapola, Damian Flynn, Andrew Keane Dec 2013

Optimal Allocation Of Reactive Power Resources To Minimise Losses And Maintain System Security, Eknath Vittal, Lasantha Meegahapola, Damian Flynn, Andrew Keane

Dr Lasantha G Meegahapola

Modern doubly-fed induction generator (DFIG) wind turbines have significant reactive power control capability, even during low wind speed conditions. This can improve system security by providing terminal voltage control at buses in the system. Generally, such control employs the full range of reactive power production from the turbine which can lead to increased system losses. By utilizing optimal power flow analysis, and limiting the range of reactive power production at certain wind farms, system losses can be minimized. If the reactive power of the wind farms are optimized to achieve the minimum system losses this may adversely affect the voltage …


Multi-Objective Reactive Power Support From Wind Farms For Network Performance Enhancement, Lasantha Meegahapola, Brendan Fox, Tim Littler, Damian Flynn Dec 2013

Multi-Objective Reactive Power Support From Wind Farms For Network Performance Enhancement, Lasantha Meegahapola, Brendan Fox, Tim Littler, Damian Flynn

Dr Lasantha G Meegahapola

This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive …


Voltage Security Constrained Reactive Power Optimization Incorporating Wind Generation, L G. Meegahapola, E Vittal, A Keane, D Flynn Dec 2013

Voltage Security Constrained Reactive Power Optimization Incorporating Wind Generation, L G. Meegahapola, E Vittal, A Keane, D Flynn

Dr Lasantha G Meegahapola

This paper presents a comparative analysis between conventional optimal power flow (OPF) and voltage constrained OPF strategies with wind generation. The study has been performed using the New England 39 bus system with 12 doublyfed induction generator (DFIG) based wind farms installed across the network. A voltage security assessment is carried out to determine the critical wind farms for voltage stability enhancement. The power losses and individual wind farm reactive power generation have been compared with and without voltage stability constraints imposed on the OPF simulation. It is shown that voltage constrained OPF leads to much greater active power losses …


Capability Curve Based Enhanced Reactive Power Control Strategy For Stability Enhancement And Network Voltage Management, Lasantha Meegahapola, Tim Littler, Sarath Perera Dec 2013

Capability Curve Based Enhanced Reactive Power Control Strategy For Stability Enhancement And Network Voltage Management, Lasantha Meegahapola, Tim Littler, Sarath Perera

Dr Lasantha G Meegahapola

Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind …