Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

University of Nevada, Las Vegas

Traffic engineering

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Public Affairs, Public Policy and Public Administration

Validation Of Waimss Incident Duration Estimation Model, Wei Wu, Pushkin Kachroo, Kaan Ozbay Oct 1998

Validation Of Waimss Incident Duration Estimation Model, Wei Wu, Pushkin Kachroo, Kaan Ozbay

Electrical & Computer Engineering Faculty Research

This paper presents an effort to validate the traffic incident duration estimation model of WAIMSS (wide area incident management support system). Duration estimation model of WAIMSS predicts the incident duration based on an estimation tree which was calibrated using incident data collected in Northern Virginia. Due to the limited sample size, a full scale test of the distribution, mean and variance of incident duration was performed only for the root node of the estimation tree, white only mean tests were executed at all other nodes whenever a data subset was available. Further studies were also conducted on the model error …


Simulation Study Of Learning Automata Games In Automated Highway Systems, Cem Unsal, Pushkin Kachroo, John S. Bay Nov 1997

Simulation Study Of Learning Automata Games In Automated Highway Systems, Cem Unsal, Pushkin Kachroo, John S. Bay

Electrical & Computer Engineering Faculty Research

One of the most important issues in Automated Highway System (AHS) deployment is intelligent vehicle control. While the technology to safely maneuver vehicles exists, the problem of making intelligent decisions to improve a single vehicle’s travel time and safety while optimizing the overall traffic flow is still a stumbling block. We propose an artificial intelligence technique called stochastic learning automata to design an intelligent vehicle path controller. Using the information obtained by on-board sensors and local communication modules, two automata are capable of learning the best possible (lateral and longitudinal) actions to avoid collisions. This learning method is capable of …


Feedback Control Solutions To Network Level User-Equilibrium Real-Time Dynamic Traffic Assignment Problems, Pushkin Kachroo, Kaan Ozbay Apr 1997

Feedback Control Solutions To Network Level User-Equilibrium Real-Time Dynamic Traffic Assignment Problems, Pushkin Kachroo, Kaan Ozbay

Electrical & Computer Engineering Faculty Research

A new method for performing dynamic traffic assignment (DTA) is presented which is applicable in real time, since the solution is based on feedback control. This method employs the design of nonlinear H∞ feedback control systems which is robust to certain class of uncertainties in the system. The solution aims at achieving user equilibrium on alternate routes in a network setting.