Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Jenny A Fisher

Selected Works

2015

Observations

Articles 1 - 2 of 2

Full-Text Articles in Social and Behavioral Sciences

Riverine Source Of Arctic Ocean Mercury Inferred From Atmospheric Observations, Jenny A. Fisher, Daniel J. Jacob, Anne L. Soerensen, Helen M. Amos, Alexandra Steffen, Elsie M. Sunderland Feb 2015

Riverine Source Of Arctic Ocean Mercury Inferred From Atmospheric Observations, Jenny A. Fisher, Daniel J. Jacob, Anne L. Soerensen, Helen M. Amos, Alexandra Steffen, Elsie M. Sunderland

Jenny A Fisher

Methylmercury is a potent neurotoxin that accumulates in aquatic food webs. Human activities, including industry and mining, have increased inorganic mercury inputs to terrestrial and aquatic ecosystems. Methylation of this mercury generates methylmercury, and is thus a public health concern. Marine methylmercury is a particular concern in the Arctic, where indigenous peoples rely heavily on marine-based diets. In the summer, atmospheric inorganic mercury concentrations peak in the Arctic, whereas they reach a minimum in the northern mid-latitudes. Here, we use a global three-dimensional ocean–atmosphere model to examine the cause of this Arctic summertime maximum. According to our simulations, circumpolar rivers …


Source Attribution And Interannual Variability Of Arctic Pollution In Spring Constrained By Aircraft (Arctas, Arcpac) And Satellite (Airs) Observations Of Carbon Monoxide, J A. Fisher, D J. Jacob, M T. Purdy, M Kopacz, P Le Sager, C C. Carouge, C D. Holmes, R M. Yantosca, R L. Batchelor, K Strong, G S. Diskin, H E. Fuelberg, J S. Holloway, E J. Hyer, W. W Mcmillan, J Warner, D G. Streets, Q Zhang, Y Yang, S Wu Feb 2015

Source Attribution And Interannual Variability Of Arctic Pollution In Spring Constrained By Aircraft (Arctas, Arcpac) And Satellite (Airs) Observations Of Carbon Monoxide, J A. Fisher, D J. Jacob, M T. Purdy, M Kopacz, P Le Sager, C C. Carouge, C D. Holmes, R M. Yantosca, R L. Batchelor, K Strong, G S. Diskin, H E. Fuelberg, J S. Holloway, E J. Hyer, W. W Mcmillan, J Warner, D G. Streets, Q Zhang, Y Yang, S Wu

Jenny A Fisher

We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003– 2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month−1 for Asian anthropogenic, 9.4 for European anthropogenic, 4.1 for North American anthropogenic, 15 for Russian biomass burning (anomalously large that year), and 23 for Southeast Asian biomass …