Open Access. Powered by Scholars. Published by Universities.®

Statistics and Probability Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Machine learning

Theory and Algorithms

Articles 1 - 2 of 2

Full-Text Articles in Statistics and Probability

Machine Learning In Support Of Electric Distribution Asset Failure Prediction, Robert D. Flamenbaum, Thomas Pompo, Christopher Havenstein, Jade Thiemsuwan Aug 2019

Machine Learning In Support Of Electric Distribution Asset Failure Prediction, Robert D. Flamenbaum, Thomas Pompo, Christopher Havenstein, Jade Thiemsuwan

SMU Data Science Review

In this paper, we present novel approaches to predicting as- set failure in the electric distribution system. Failures in overhead power lines and their associated equipment in particular, pose significant finan- cial and environmental threats to electric utilities. Electric device failure furthermore poses a burden on customers and can pose serious risk to life and livelihood. Working with asset data acquired from an electric utility in Southern California, and incorporating environmental and geospatial data from around the region, we applied a Random Forest methodology to predict which overhead distribution lines are most vulnerable to fail- ure. Our results provide evidence …


Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan Aug 2019

Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan

John E. Sawyer

Nitrogen (N) fertilizer recommendation tools could be improved for estimating corn (Zea mays L.) N needs by incorporating site-specific soil and weather information. However, an evaluation of analytical methods is needed to determine the success of incorporating this information. The objectives of this research were to evaluate statistical and machine learning (ML) algorithms for utilizing soil and weather information for improving corn N recommendation tools. Eight algorithms [stepwise, ridge regression, least absolute shrinkage and selection operator (Lasso), elastic net regression, principal component regression (PCR), partial least squares regression (PLSR), decision tree, and random forest] were evaluated using a dataset …