Open Access. Powered by Scholars. Published by Universities.®

Statistics and Probability Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistical Theory

PDF

U.C. Berkeley Division of Biostatistics Working Paper Series

Gene expression

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Statistics and Probability

Resampling-Based Multiple Testing: Asymptotic Control Of Type I Error And Applications To Gene Expression Data, Katherine S. Pollard, Mark J. Van Der Laan Jun 2003

Resampling-Based Multiple Testing: Asymptotic Control Of Type I Error And Applications To Gene Expression Data, Katherine S. Pollard, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

We define a general statistical framework for multiple hypothesis testing and show that the correct null distribution for the test statistics is obtained by projecting the true distribution of the test statistics onto the space of mean zero distributions. For common choices of test statistics (based on an asymptotically linear parameter estimator), this distribution is asymptotically multivariate normal with mean zero and the covariance of the vector influence curve for the parameter estimator. This test statistic null distribution can be estimated by applying the non-parametric or parametric bootstrap to correctly centered test statistics. We prove that this bootstrap estimated null …


A Method To Identify Significant Clusters In Gene Expression Data, Katherine S. Pollard, Mark J. Van Der Laan Apr 2002

A Method To Identify Significant Clusters In Gene Expression Data, Katherine S. Pollard, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

Clustering algorithms have been widely applied to gene expression data. For both hierarchical and partitioning clustering algorithms, selecting the number of significant clusters is an important problem and many methods have been proposed. Existing methods for selecting the number of clusters tend to find only the global patterns in the data (e.g.: the over and under expressed genes). We have noted the need for a better method in the gene expression context, where small, biologically meaningful clusters can be difficult to identify. In this paper, we define a new criteria, Mean Split Silhouette (MSS), which is a measure of cluster …


A New Partitioning Around Medoids Algorithm, Mark J. Van Der Laan, Katherine S. Pollard, Jennifer Bryan Feb 2002

A New Partitioning Around Medoids Algorithm, Mark J. Van Der Laan, Katherine S. Pollard, Jennifer Bryan

U.C. Berkeley Division of Biostatistics Working Paper Series

Kaufman & Rousseeuw (1990) proposed a clustering algorithm Partitioning Around Medoids (PAM) which maps a distance matrix into a specified number of clusters. A particularly nice property is that PAM allows clustering with respect to any specified distance metric. In addition, the medoids are robust representations of the cluster centers, which is particularly important in the common context that many elements do not belong well to any cluster. Based on our experience in clustering gene expression data, we have noticed that PAM does have problems recognizing relatively small clusters in situations where good partitions around medoids clearly exist. In this …


Statistical Inference For Simultaneous Clustering Of Gene Expression Data, Katherine S. Pollard, Mark J. Van Der Laan Jul 2001

Statistical Inference For Simultaneous Clustering Of Gene Expression Data, Katherine S. Pollard, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

Current methods for analysis of gene expression data are mostly based on clustering and classification of either genes or samples. We offer support for the idea that more complex patterns can be identified in the data if genes and samples are considered simultaneously. We formalize the approach and propose a statistical framework for two-way clustering. A simultaneous clustering parameter is defined as a function of the true data generating distribution, and an estimate is obtained by applying this function to the empirical distribution. We illustrate that a wide range of clustering procedures, including generalized hierarchical methods, can be defined as …