Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu Jan 2013

Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu

Open Access Theses & Dissertations

Hafnium oxide (HfO2) has emerged as the most promising high-k dielectric for Metal-Oxide-Semiconductor (MOS) devices and has been highlighted as the most suitable dielectric materials to replace silicon oxide because of its comprehensive performance. In the present research, yttrium-doped HfO2 (YDH) thin films were fabricated using RF magnetron sputter deposition onto Si (100) and quartz with a variable thickness. Cross-sectional scanning electron microscopy coupled with Filmetrics revealed that film thickness values range from 700 A° to 7500 A°. Electrical properties such as AC Resistivity and current-voltage (I-V) characteristics of YDH films were studied. YDH films that were relatively thin (<1500 A°) crystallized in monoclinic phase while thicker films crystallized in cubic phase. The band gap (Eg) of the films was calculated from the optical measurements. The band gap was found to be ∼5.60 eV for monoclinic while it is ∼6.05 eV for cubic phase of YDH films. Frequency dependence of the electrical resistivity (ρac) and the total conductivity of the films were measured. Resistivity decreased (by three orders of magnitude) with increasing frequency from 100 Hz to 1 MHz, attributed due to the hopping mechanism in YDH films. Whereas, while ρac∼1Ω-m at low frequencies (100 Hz), it decreased to ∼ 104 Ω-cm at higher frequencies (1 MHz). Aluminum (Al) metal electrodes were deposited to fabricate a thin film capacitor with YDH layer as dielectric film thereby employing Al-YDH-Si capacitor structure. The results indicate that the capacitance of the films decrease with increasing film thickness. A detailed analysis of the electrical characteristics of YDH films is presented.


Investigation Of Nbnx Thin Films And Nanoparticles Grown By Pulsed Laser Deposition And Thermal Diffusion, Ashraf Hassan Farha Jan 2013

Investigation Of Nbnx Thin Films And Nanoparticles Grown By Pulsed Laser Deposition And Thermal Diffusion, Ashraf Hassan Farha

Electrical & Computer Engineering Theses & Dissertations

Niobium nitride films (NbNx) were grown on Nb and Si (100) substrates using pulsed laser deposition (PLD), laser heating, and thermal diffusion methods. Niobium nitride films were deposited on Nb substrates using PLD with a Q-switched Nd: YAG laser (λ = 1064 nm, 40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, different nitrogen background pressures and deposition temperatures. The effect of changing PLD parameters for films done by PLD was studied. The seen observations establish guidelines for adjusting the laser parameters to achieve the desired morphology and phase of the grown NbNx films.

When the …


Ruco To Extend The Scalability Of Ultra-Thin Direct Plate Liners, Daniel Verne Greenslit Jan 2013

Ruco To Extend The Scalability Of Ultra-Thin Direct Plate Liners, Daniel Verne Greenslit

Legacy Theses & Dissertations (2009 - 2024)

In traditional semiconductor technology a sputtered copper seed layer is used to improve the adhesion, microstucture, and electromigration characteristics of electrochemically deposited (ECD) copper. The seed layer is deposited on top of a Ta/TaN stack. The Ta layer acts as an adhesion and nucleation layer for the copper seed and the TaN serves as a diffusion barrier for the Cu. As the line widths continue to shrink, scaling each of these layers becomes more difficult. It would be advantageous for the interconnect to be composed of as much copper as possible, transitioning from the traditional liner seed stack to a …


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Jan 2013

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Faculty Publications

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …