Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum mechanics

External Link

Articles 1 - 3 of 3

Full-Text Articles in Physics

Supersymmetric Quantum Mechanics And Solvable Models, Asim Gangopadhyaya, Jonathan Bougie, Jeffrey Mallow, C. Rasinariu Dec 2015

Supersymmetric Quantum Mechanics And Solvable Models, Asim Gangopadhyaya, Jonathan Bougie, Jeffrey Mallow, C. Rasinariu

Asim Gangopadhyaya

We review solvable models within the framework of supersymmetric quantum mechanics (SUSYQM). In SUSYQM, the shape invariance condition insures solvability of quantum mechanical problems. We review shape invariance and its connection to a consequent potential algebra. The additive shape invariance condition is specified by a difference-differential equation; we show that this equation is equivalent to an infinite set of partial differential equations. Solving these equations, we show that the known list of h-independent superpotentials is complete. We then describe how these equations could be extended to include superpotentials that do depend on h.


Inter-Relations Of Solvable Potentials, Asim Gangopadhyaya, Prasanta Panigrahi, Uday Sukhatne Dec 2015

Inter-Relations Of Solvable Potentials, Asim Gangopadhyaya, Prasanta Panigrahi, Uday Sukhatne

Asim Gangopadhyaya

Solvable Natanzon potentials in nonrelativistic quantum mechanics are known to group into two disjoint classes depending on whether the Schrödinger equation can be reduced to a hypergeometric or a confluent hypergeometric equation. All the potentials within each class are connected via point canonical transformations. We establish a connection between the two classes with appropriate limiting procedures and redefinition of parameters, thereby inter-relating all known solvable potentials.


Quantum Mysteries Revisited Again, Padmanabhan Aravind Dec 2003

Quantum Mysteries Revisited Again, Padmanabhan Aravind

Padmanabhan K. Aravind

This paper describes a device, consisting of a central source and two widely separated detectors with six switch settings each, that provides a simple gedanken demonstration of the non-classical correlations that are the subject of Bell’s theorem without relying on either statistical effects or the occurrence of rare events. The mechanism underlying the operation of the device is revealed for readers with a knowledge of quantum mechanics.