Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Nonrelativistic Qed Approach To The Bound-Electron G Factor, Krzysztof Pachucki, Ulrich D. Jentschura, Vladimir A. Yerokhin Oct 2004

Nonrelativistic Qed Approach To The Bound-Electron G Factor, Krzysztof Pachucki, Ulrich D. Jentschura, Vladimir A. Yerokhin

Physics Faculty Research & Creative Works

Within a systematic approach based on nonrelativistic quantum electrodynamics, we derive the one-loop self-energy correction of order α ( Z α )4 to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order α2 ( Z α )4 ln [ ( Z α )- 2 ] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for …


Gold Adatoms And Dimers On Relaxed Graphite Surfaces, Guan Ming Wang, Joseph J. Belbruno, Steven D. Kenny, Roger Smith May 2004

Gold Adatoms And Dimers On Relaxed Graphite Surfaces, Guan Ming Wang, Joseph J. Belbruno, Steven D. Kenny, Roger Smith

Dartmouth Scholarship

The interaction of deposited gold adatoms and dimers with multilayer relaxed graphite surfaces is investigated through a density functional approach with numerical orbitals and a relativistic core pseudopotential. The energy landscape for a gold adatom along [110] agrees with scanning tunneling microscopy observations including the preferred β binding site for adatoms and the mobility difference between silver and gold adatoms. Deposited particles are shown to induce surface deformation and polarization. Static relaxation and dynamic simulations indicate that the energetically preferred binding orientation for a gold dimer is normal rather than parallel to the graphite surface. The dimer response to a …


Microsecond Spin-Flip Times In N-Gaas Measured By Time-Resolved Polarization Of Photoluminescence, John S. Colton, T. A. Kennedy, A. S. Bracker, D. Gammon Mar 2004

Microsecond Spin-Flip Times In N-Gaas Measured By Time-Resolved Polarization Of Photoluminescence, John S. Colton, T. A. Kennedy, A. S. Bracker, D. Gammon

Faculty Publications

We have observed microsecond spin-flip times in lightly doped n-GaAs, by measuring the photoluminescence polarization in the time domain with pump and probe pulses. Times up to 1.4 μs have been measured. Our results as a function of magnetic field indicated three regions governing the spin relaxation: a low field region, where spin-flip times increase due to suppression of the nuclear hyperfine interaction for localized electrons, a medium field region where spin-flip times increase due to narrowing of the hyperfine relaxation for interacting electrons, and a high field region where spin-flip times begin to level off due to the increasing …


Influence Of Antenna Aiming On Ece In Mast, Josef Preinhaelter, Jakub Urban, Pavol Pavlo, Vladimir Shevchenko, Martin Valovič, Linda L. Vahala, George Vahala Jan 2004

Influence Of Antenna Aiming On Ece In Mast, Josef Preinhaelter, Jakub Urban, Pavol Pavlo, Vladimir Shevchenko, Martin Valovič, Linda L. Vahala, George Vahala

Electrical & Computer Engineering Faculty Publications

The effect of the direction of the detected beam on the intensity of ECE is studied. It is found that the combined effects of the strong dependence of the conversion efficiencey of O mode at the plasma resonance on the direction of the incident wave and the partial screening of the beam waist by the MAST vessel wall, can be responsible for the weakening of ECE emission for some frequencies. The theoretical model for ECE data interpretation on MAST has been significantly improved. New features of the model are as follows: the quasioptical treatment of the receiving antenna, interference, polarization …


Complete Angular Distribution Measurements Of Two-Body Deuteron Photodisintegration Between 0.5 And 3 Gev, H. Bagdasaryan, H. Bektasoglu, G. E. Dodge, T. A. Forest, C. E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, F. Sabatié, S. Stepanyan, L. B. Weinstein, J. Yun, Et Al., The Clas Collaboration Jan 2004

Complete Angular Distribution Measurements Of Two-Body Deuteron Photodisintegration Between 0.5 And 3 Gev, H. Bagdasaryan, H. Bektasoglu, G. E. Dodge, T. A. Forest, C. E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, F. Sabatié, S. Stepanyan, L. B. Weinstein, J. Yun, Et Al., The Clas Collaboration

Physics Faculty Publications

Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10°–160°. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.