Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna Apr 2023

Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna

Electrical Engineering Theses

This thesis presents a study on the optical characteristics of hollow-core photonic crystal fibers (HC-PCFs) with a band gap cladding structure and their applications in optical fiber sensing. This 800B HC-PCF exhibited excellent optical properties and has a flexible structure, which makes them suitable for a wide range of industrial applications. Finite element simulations and structural optimization designs were conducted using the surface plasmon resonance (SPR) technique to determine the optimal performance parameters of the 800B HC-PCF. The fiber was further modified using the SPR technique to improve its practical detection capabilities. The performance of the modified fiber was observed …


Modulation Of Non-Diffracting Hermite Gaussian Beams And Nonlinear Optical Microscopy For Nanoscale Sulfur Imaging, Gilberto Navarro Dec 2022

Modulation Of Non-Diffracting Hermite Gaussian Beams And Nonlinear Optical Microscopy For Nanoscale Sulfur Imaging, Gilberto Navarro

Open Access Theses & Dissertations

Hermite Gaussian beams are the solutions of the scalar paraxial wave equation in Cartesian coordinates. A method was developed to modulate the intensity profile of non-diffracting Hermite Gaussian (HG) beams. The original HG beamâ??s intensity profile consists of high intense corner lobes and low intense central lobes which is not ideal for structured illumination in light-field microscopy. The modulated HG beams were generated by multiplying the original HGâ??s beam envelope by a super-Gaussian envelope to modify the intensity profile to attain equal intensity lobes. The propagation of the original HG beam and modulated HG beam were compared to determine that …


Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead Jan 2021

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead

Theses and Dissertations

Metal-silicon nanostructures are a growing area of research due to their applications in multiple fields such as biosensing and catalysis. In addition, silicon can provide strong support effects to metal nanoparticles while being more cost effective than traditionally used supports, like titania. Traditional wet-chemical methods are capable of synthesizing metal-silicon nanostructures with a variety of composition and nanoparticle shapes, but they often require high temperatures, toxic solvents, strong reducing agents, or need capping agents added to stabilize the nanoparticles. Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces that offers a faster, simpler, and greener synthesis route …


Tunable Refractive Index Through Spatially Modified Nanoparticle Films For Long-Range Spr Biosensing Applications, Stephen Joshua Binderup Jan 2020

Tunable Refractive Index Through Spatially Modified Nanoparticle Films For Long-Range Spr Biosensing Applications, Stephen Joshua Binderup

Graduate Research Theses & Dissertations

Despite optics and refraction being among the oldest scientific principles, material limitations have prevented scientists from taking full advantage of the potential this technology holds. Indeed, films with designer optical properties have potential for use in exotic cloaking architectures, advanced waveguides, and precise optical biosensors. This thesis focuses on the fabrication methodology for making thin films with refractive index tuned to a desired value through self-assembly of amorphous nanoparticle films made of organosilicate materials. The inclusion of a slowly evaporating polymer phase along with the organosilicate nanoparticles results in nanopores formed within the film, which effectively reduce the film’s refractive …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Two-Photon Microscopy Of Nanoparticles And Biotissues, Judith Noemi Rivera Jan 2013

Two-Photon Microscopy Of Nanoparticles And Biotissues, Judith Noemi Rivera

Open Access Theses & Dissertations

Biomedical Imaging is an important tool in medical research and clinical practice. From understanding the fundamental processes involved in our biological makeup to its use in diagnostics in helping determine what ails us, the advancements in imaging and microscopy have helped shape our view of the world and nature. Microscopy in particular is often used to study the smallest of cells and their dynamical properties while attempting to minimally change the sample being studied. My research objective is largely divided into two parts. The first part consists of designing a video-rate raster scanning two-photon microscope that is faster than current …


Plasmon Enhanced Near-Field Interactions In Surface Coupled Nanoparticle Arrays For Integrated Nanophotonic Devices, Amitabh Ghoshal Jan 2010

Plasmon Enhanced Near-Field Interactions In Surface Coupled Nanoparticle Arrays For Integrated Nanophotonic Devices, Amitabh Ghoshal

Electronic Theses and Dissertations

The current thrust towards developing silicon compatible integrated nanophotonic devices is driven by need to overcome critical challenges in electronic circuit technology related to information bandwidth and thermal management. Surface plasmon nanophotonics represents a hybrid technology at the interface of optics and electronics that could address several of the existing challenges. Surface plasmons are electronic charge density waves that can occur at a metal-dielectric interface at optical and infrared frequencies. Numerous plasmon based integrated optical devices such as waveguides, splitters, resonators and multimode interference devices have been developed, however no standard integrated device for coupling light into nanoscale optical circuits …