Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


A Molecular Dynamics Study Of Temperature Dependent Wetting In Alkane-Water Systems, Pauf Neupane Jan 2020

A Molecular Dynamics Study Of Temperature Dependent Wetting In Alkane-Water Systems, Pauf Neupane

Doctoral Dissertations

“The wetting behavior of aqueous organic systems is of great importance in several environmental and industrial processes such as the formation and growth of atmospheric aerosols, crude oil recovery from an oil field, onsite cleaning of natural gas, and clean-up of oil spills. In this work, we employed molecular dynamics (MD) simulations to explore the temperature dependent wetting behavior of octane and nonane on water in planar interfaces as well as in nanodroplets using PYS alkane and SPC/E and TIP4P/2005 water models.

For planar interfaces, we found unusual wetting behavior of octane and nonane on SPC/E water, but generally not …