Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Non-Equilibrium Melting And Sublimation Of Graphene Simulated With Two Interatomic Potentials, Brad Steele Jan 2013

Non-Equilibrium Melting And Sublimation Of Graphene Simulated With Two Interatomic Potentials, Brad Steele

USF Tampa Graduate Theses and Dissertations

The mechanisms of the sublimation of graphene at zero pressure and the condensation of carbon vapor is investigated by molecular dynamics (MD) simulations. The interatomic interactions are described by the Reactive Empirical Bond Order potential (REBO). It is found that graphene sublimates at a temperature of 5,200 K. At the onset of sublimation, defects that contain several pentagons and heptagons are formed, that are shown to evolve from double vacancies and stone wales defects. These defects consisting of pentagons and heptagons act as nucleation sites for the gaseous phase. The influence of the interatomic interactions on the sublimation process are …


Development Of Interatomic Potentials For Large Scale Molecular Dynamics Simulations Of Carbon Materials Under Extreme Conditions, Romain Perriot Jan 2012

Development Of Interatomic Potentials For Large Scale Molecular Dynamics Simulations Of Carbon Materials Under Extreme Conditions, Romain Perriot

USF Tampa Graduate Theses and Dissertations

The goal of this PhD research project is to devise a robust interatomic potential for large scale molecular dynamics simulations of carbon materials under extreme conditions. This screened-environment dependent reactive empirical bond order potential (SED-REBO) is specifically designed to describe carbon materials under extreme compressive or tensile stresses. Based on the original REBO potential by Brenner and co workers, SED-REBO includes reparametrized pairwise interaction terms and a new screening term, which serves the role of a variable cutoff. The SED-REBO potential overcomes the deficiencies found with the most commonly used interatomic potentials for carbon: the appearance of artificial forces due …


Properties Of Ferroelectric Perovskite Structures Under Non-Equilibrium Conditions, Qingteng Zhang Jan 2012

Properties Of Ferroelectric Perovskite Structures Under Non-Equilibrium Conditions, Qingteng Zhang

USF Tampa Graduate Theses and Dissertations

Ferroelectric materials have received lots of attention thanks to their intriguing properties such as the piezoelectric and pyroelectric effects, as well as the large dielectric constants and the spontaneous polarization which can potentially be used for information storage. In particular, perovskite crystal has a very simple unit cell structure yet a very rich phase transition diagram, which makes it one of the most intensively studied ferroelectric materials. In this dissertation, we use effective Hamiltonian, a first-principles-based computational technique to study the finite-temperature properties of ferroelectric perovskites. We studied temperature-graded

(BaxSr1-x )TiO3 (BST) bulk alloys as well as the dynamics of …


Atomistic Studies Of Shock-Wave And Detonation Phenomena In Energetic Materials, Mikalai Budzevich Jan 2011

Atomistic Studies Of Shock-Wave And Detonation Phenomena In Energetic Materials, Mikalai Budzevich

USF Tampa Graduate Theses and Dissertations

The major goal of this PhD project is to investigate the fundamental properties of energetic materials, including their atomic and electronic structures, as well as mechanical properties, and relate these to the fundamental mechanisms of shock wave and detonation propagation using state-of-the-art simulation methods. The first part of this PhD project was aimed at the investigation of static properties of energetic materials (EMs) with specific focus on 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). The major goal was to calculate the isotropic and anisotropic equations of state for TATB within a range of compressions not accessible to experiment, and to make predictions of anisotropic sensitivity …