Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Analysis Of Critical Behavior In Magnetic Materials, Dustin David Belyea Jun 2014

Analysis Of Critical Behavior In Magnetic Materials, Dustin David Belyea

USF Tampa Graduate Theses and Dissertations

This work contains a broad study of a variety of magnetic materials undergoing second order phase transitions. In general this leads to an overall increase in information and analytical methods to further the field of magnetocalorics. Specifically, critical aspects of magnetocaloric materials were compared within systems in relation to structure, stoichiometry, magnetic minority phases and magnetic contaminants. Detailed analyses were developed to quantify techniques which were in the past used mainly in a qualitative way, leading to a more complete understanding of how critical phenomena impacts the magnetocaloric response.


Neutron Scattering Studies Of Cuprates And Iron Pnictides, Mengshu Liu May 2014

Neutron Scattering Studies Of Cuprates And Iron Pnictides, Mengshu Liu

Doctoral Dissertations

Presented within are neutron scattering studies of several different high temperature superconducting materials: BaFe1.9Ni0.1As2 [Barium Iron Nickel Arsenic], BaFe1.85Ni0.15As2 [Barium Iron Nickel Arsenic], Ba0.67K0.33Fe2As2 [Barium Potassium Iron Arsenic], and Pr0.88LaCe0.12CuO4-y [Praseodymium Lanthanum Cerium Copper Oxide]. The main focus is on the magnetic excitations within the systems.

For BaFe1.9Ni0.1As2 [Barium Iron Nickel Arsenic], we measured the intensity of its magnetic excitations and compared the results with excitations in antiferromagnetic non-superconducting BaFe2As2 …


Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi Jan 2014

Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi

Legacy Theses & Dissertations (2009 - 2024)

The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of …