Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Experiments On Tracer Diffusion In Aqueous And Non-Aqueous Solvent Combinations, Duncan M. Frasch, Daniel Spiegel Sep 2014

Experiments On Tracer Diffusion In Aqueous And Non-Aqueous Solvent Combinations, Duncan M. Frasch, Daniel Spiegel

Physics and Astronomy Faculty Research

Forced Rayleigh scattering is used to study the tracer diffusion of an azobenzene in binary combinations of polar solvents, including water. In the absence of water, the tracer diffusion coefficient D in the mixture lies between the diffusion coefficients within the pure solvents, on a curve that is reasonably close to the prediction of free-volume theory. If water is present, on the other hand, the diffusion coefficient displays a minimum that is less than the smaller of the two pure-solvent values. We attempt to understand the different behavior in water by concentrating on the fairly hydrophobic nature of the solute, …


Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu Aug 2014

Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu

Doctoral Dissertations

In bulk heterojunction (BHJ) thin film organic photovoltaics (OPV), morphology control is critical to obtain good device efficiency. Nanoscale phase separation that creates bicontinuous interpenetrating structure on a size scale commensurate with exciton diffusion length (~10 nm) is thought to be the ideal morphology. Results obtained from this work indicate that morphology can be affected by chemical structure of the polymer, processing conditions, blending ratio and post treatments. Physical properties of the material, such as crystallinity, crystal orientation, material interactions and miscibility, surface energy and particle aggregations are critical for determining the morphology and thus the device performance. Previous investigations …


Heterogeneous Rotational Diffusion Of A Fluorescent Probe In Lipid Monolayers, Christina M. Othon Aug 2014

Heterogeneous Rotational Diffusion Of A Fluorescent Probe In Lipid Monolayers, Christina M. Othon

Christina M Othon

The rotational correlation time of the lipid probe 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine (NBD-PC) is measured using fluorescence anisotropy for two lipid species. We measure the rotational diffusion in a monolayer of 1,2-Didecanoyl-sn-glycero-3-phosphocholine (DPPC) which displays a phase transition at room temperature from the liquid expanded to the liquid-condensed phase. The constant rotational diffusion of the probe throughout the phase transition reflects the measurement of dynamics in only the liquid-expanded phase. We contrast the dynamic changes during this phase coexistence to the continuous density increase observed in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at room temperature. We observe a non-exponential decay of the probe diffusion consistent with heterogeneity …


Crac Motif Peptide Of The Hiv-1 Gp41 Protein Thins Sopc Membranes And Interacts With Cholesterol., Alexander Greenwood, Jianjun Pan, Thalia Mills, John Nagle, Richard Epand, Stephanie Tristram-Nagle Aug 2014

Crac Motif Peptide Of The Hiv-1 Gp41 Protein Thins Sopc Membranes And Interacts With Cholesterol., Alexander Greenwood, Jianjun Pan, Thalia Mills, John Nagle, Richard Epand, Stephanie Tristram-Nagle

Prof. Stephanie Tristram-Nagle Ph.D.

This study uses low-angle (LAXS) and wide-angle (WAXS) X-ray synchrotron scattering, volume measurements and thin layer chromatography to determine the structure and interactions of SOPC, SOPC/cholesterol mixtures, SOPC/peptide and SOPC/cholesterol/peptide mixtures. N-acetyl-LWYIK-amide (LWYIK) represents the naturally-occurring CRAC motif segment in the pretransmembrane region of the gp41 protein of HIV-1, and N-acetyl-IWYIK-amide (IWYIK), an unnatural isomer, is used as a control. Both peptides thin the SOPC bilayer by approximately 3 A, and cause the area/unit cell (peptide+SOPC) to increase by approximately 9 A2 from the area/lipid of SOPC at 30 degrees C (67.0+/-0.9 A2). Model fitting suggests that LWYIK's average position …


Position-Dependent Diffusion Of Light In Disordered Waveguides, Alexey Yamilov, Raktim Sarma, Brandon Redding, Ben Payne, Heeso Noh, Hui Cao Jan 2014

Position-Dependent Diffusion Of Light In Disordered Waveguides, Alexey Yamilov, Raktim Sarma, Brandon Redding, Ben Payne, Heeso Noh, Hui Cao

Physics Faculty Research & Creative Works

We present direct experimental evidence for position-dependent diffusion in open random media. The interference of light in time-reversed paths results in renormalization of the diffusion coefficient, which varies spatially. To probe the wave transport inside the system, we fabricate two-dimensional disordered waveguides and monitor the light intensity from the third dimension. Change the geometry of the system or dissipation limits the size of the loop trajectories, allowing us to control the renormalization of the diffusion coefficient. This work shows the possibility of manipulating wave diffusion via the interplay of localization and dissipation.