Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Density functional theory

Chemistry

Messiah University

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Full Correlation In A Multiconfigurational Study Of Bimetallic Clusters : Restricted Active Space Pair-Density Functional Theory Study Of [2fe-2s] Systems, Samuel J. Stoneburner, Davide Presti, Donald G. Truhlar, Laura Gagliardi Jan 2019

Full Correlation In A Multiconfigurational Study Of Bimetallic Clusters : Restricted Active Space Pair-Density Functional Theory Study Of [2fe-2s] Systems, Samuel J. Stoneburner, Davide Presti, Donald G. Truhlar, Laura Gagliardi

Educator Scholarship

Iron-sulfur clusters play a variety of important roles in protein chemistry, and understanding the energetics of their spin ladders is an important part of understanding these roles. Computational modeling can offer considerable insight into such problems; however, calculations performed thus far on systems with multiple transition metals have typically either been restricted to a single-configuration representation of the density, as in Kohn-Sham theory, or been limited to correlating excitations only within an active space, as in active-space self-consistent field methods. For greater reliability, a calculation should include full correlation, i.e., not only correlation internal to the active space but also …


Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis, Samuel J. Stoneburner, Carlo Alberto Gaggioli, Christopher J. Cramer, Laura Gagliardi Jan 2019

Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis, Samuel J. Stoneburner, Carlo Alberto Gaggioli, Christopher J. Cramer, Laura Gagliardi

Educator Scholarship

Catalytic processes are crucially important for many practical chemical applications. Heterogeneous catalysts are especially appealing because of their high stability and the relative ease with which they may be recovered and reused. Computational modeling can play an important role in the design of more catalytically active materials through the identification of reaction mechanisms and the opportunity to assess hypothetical catalysts in silico prior to experimental verification. Kohn-Sham density functional theory (KS-DFT) is the most used method in computational catalysis because it is affordable and it gives results of reasonable accuracy in many instances. Furthermore, it can be employed in a …


Mc-Pdft Can Calculate Singlet-Triplet Splittings Of Organic Diradicals., Samuel J. Stoneburner, Donald G. Truhlar, Laura Gagliardi Jan 2018

Mc-Pdft Can Calculate Singlet-Triplet Splittings Of Organic Diradicals., Samuel J. Stoneburner, Donald G. Truhlar, Laura Gagliardi

Educator Scholarship

The singlet-triplet splittings of a set of diradical organic molecules are calculated using multiconfiguration pair-density functional theory (MC-PDFT) and the results are compared with those obtained by Kohn-Sham density functional theory (KS-DFT) and complete active space second-order perturbation theory (CASPT2) calculations. We found that MC-PDFT, even with small and systematically defined active spaces, is competitive in accuracy with CASPT2, and it yields results with greater accuracy and precision than Kohn-Sham DFT with the same parent functional. MC-PDFT also avoids the challenges associated with spin contamination in KS-DFT. It is also shown that MC-PDFT is much less computationally expensive than CASPT2 …