Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles

2014

Faculty Publications

Articles 1 - 2 of 2

Full-Text Articles in Physics

Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar Sep 2014

Magnetic Correlations And Pairing In The 1/5-Depleted Square Lattice Hubbard Model, Ehsan Khatami, Rajiv R.P. Singh, Warren E. Pickett, Richard T. Scalettar

Faculty Publications

We study the single-orbital Hubbard model on the 1/5-depleted square-lattice geometry, which arises in such diverse systems as the spin-gap magnetic insulator CaV4O9 and ordered-vacancy iron selenides, presenting new issues regarding the origin of both magnetic ordering and superconductivity in these materials. We find a rich phase diagram that includes a plaquette singlet phase, a dimer singlet phase, a Néel and a block-spin antiferromagnetic phase, and stripe phases. Quantum Monte Carlo simulations show that the dominant pairing correlations at half filling change character from d wave in the plaquette phase to extended s wave upon transition to the Néel phase. …


Linked-Cluster Expansion For The Green's Function Of The Infinite-U Hubbard Model, Ehsan Khatami, Edward Perepelitsky, Marcos Rigol, Sriram B. Shastry Jun 2014

Linked-Cluster Expansion For The Green's Function Of The Infinite-U Hubbard Model, Ehsan Khatami, Edward Perepelitsky, Marcos Rigol, Sriram B. Shastry

Faculty Publications

We implement a highly efficient strong-coupling expansion for the Green's function of the Hubbard model. In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We compute the finite-temperature Green's function analytically in the momentum and Matsubara frequency space as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at temperatures lower than, or of the …