Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Applied Mathematics

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 42

Full-Text Articles in Physics

Numerical Treatment For The Flow Of Casson Fluid And Heat Transfer Model Over An Unsteady Stretching Surface In The Presence Of Internal Heat Generation/Absorption And Thermal Radiation, Mohammed M. Babatin Dec 2018

Numerical Treatment For The Flow Of Casson Fluid And Heat Transfer Model Over An Unsteady Stretching Surface In The Presence Of Internal Heat Generation/Absorption And Thermal Radiation, Mohammed M. Babatin

Applications and Applied Mathematics: An International Journal (AAM)

Several important industrial and engineering problems are very difficult to solve analytically since they are high nonlinear. The Chebyshev spectral collocation method possesses an ability to predict the solution behavior for a system of high nonlinear ordinary differential equations. This method which is based on differentiated Chebyshev polynomials is introduced to obtain an approximate solution to the system of ordinary differential equations which physically describe the flow and heat transfer problem of an unsteady Casson fluid model taking into consideration both heat generation and radiation effects in the temperature equation. Based on the spectral collocation method, the obtained solution is …


Numerical Studies For Mhd Flow And Gradient Heat Transport Past A Stretching Sheet With Radiation And Heat Production Via Dtm, Khadijah M. Abualnaja Dec 2018

Numerical Studies For Mhd Flow And Gradient Heat Transport Past A Stretching Sheet With Radiation And Heat Production Via Dtm, Khadijah M. Abualnaja

Applications and Applied Mathematics: An International Journal (AAM)

This paper presents a numerically study for the effect of the internal heat generation, magnetic field and thermal radiation effects on the flow and gradient heat transfer of a Newtonian fluid over a stretching sheet. By using a similarity transformation, the governing PDEs can be transformed into a coupled non-linear system of ODEs with variable coefficients. Numerical solutions for these equations subject to appropriate boundary conditions are obtained by using the differential transformation method (DTM). The effects of various physical parameters such as viscosity parameter, the suction parameter, the radiation parameter, internal heat generation or absorption parameter and the Prandtl …


Conformable Derivative Operator In Modelling Neuronal Dynamics, Mehmet Yavuz, Burcu Yaşkıran Dec 2018

Conformable Derivative Operator In Modelling Neuronal Dynamics, Mehmet Yavuz, Burcu Yaşkıran

Applications and Applied Mathematics: An International Journal (AAM)

This study presents two new numerical techniques for solving time-fractional one-dimensional cable differential equation (FCE) modeling neuronal dynamics. We have introduced new formulations for the approximate-analytical solution of the FCE by using modified homotopy perturbation method defined with conformable operator (MHPMC) and reduced differential transform method defined with conformable operator (RDTMC), which are derived the solutions for linear-nonlinear fractional PDEs. In order to show the efficiencies of these methods, we have compared the numerical and exact solutions of fractional neuronal dynamics problem. Moreover, we have declared that the proposed models are very accurate and illustrative techniques in determining to approximate-analytical …


Thermoelastic Stress Analysis Of A Functionally Graded Transversely Isotropic Hollow Cylinder In Elliptical Coordinates, Tara Dhakate, Vinod Varghese, Lalsingh Khalsa Dec 2018

Thermoelastic Stress Analysis Of A Functionally Graded Transversely Isotropic Hollow Cylinder In Elliptical Coordinates, Tara Dhakate, Vinod Varghese, Lalsingh Khalsa

Applications and Applied Mathematics: An International Journal (AAM)

This paper is concerned with the axisymmetric thermoelastic problem to investigate the influence of nonlinear heat conduction equation, displacement functions and thermal stresses of a functionally graded transversely isotropic hollow cylinder that is presented in the elliptical coordinate system. The method of integral transform technique is used to produce an exact solution of the heat conduction equation in which sources are generated according to a linear function of the temperature. An explicit exact solution of the governing thermoelastic equation is proposed when material properties are power-law functions with the exponential form of the radial coordinate. Numerical calculations are also carried …


Quasi-Linearization Method With Rational Legendre Collocation Method For Solving Mhd Flow Over A Stretching Sheet With Variable Thickness And Slip Velocity Which Embedded In A Porous Medium, M. M. Khader Dec 2018

Quasi-Linearization Method With Rational Legendre Collocation Method For Solving Mhd Flow Over A Stretching Sheet With Variable Thickness And Slip Velocity Which Embedded In A Porous Medium, M. M. Khader

Applications and Applied Mathematics: An International Journal (AAM)

The quasi-linearization method (QLM) and the rational Legendre functions are introduced here to present the numerical solution for the Newtonian fluid flow past an impermeable stretching sheet which embedded in a porous medium with a power-law surface velocity, variable thickness and slip velocity. Firstly, due to the high nonlinearity which yielded from the ordinary differential equation which describes the proposed physical problem, we construct a sequence of linear ODEs by using the QLM, hence the resulted equations become a system of linear algebraic equations. The comparison with the available results in the literature review proves that the obtained results via …


Similarity Analysis Of Three Dimensional Nanofluid Flow By Deductive Group Theoretic Method, Hemangini Shukla, Hema C. Surati, M. G. Timol Dec 2018

Similarity Analysis Of Three Dimensional Nanofluid Flow By Deductive Group Theoretic Method, Hemangini Shukla, Hema C. Surati, M. G. Timol

Applications and Applied Mathematics: An International Journal (AAM)

The objective of this paper is to obtain similarity solution of three-dimensional nanofluid flow over flat surface stretched continuously in two lateral directions. Two independent variables from governing equations are reduced by applying deductive two parameter group theoretical method. Partial differential equations with boundary conditions are converted into ordinary differential equations with appropriate boundary conditions. Obtained equations are solved for temperature and velocity. The effect of nanoparticles volume fraction on temperature and velocity profile is investigated.


The Basins Of Convergence In The Planar Restricted Four-Body Problem With Variable Mass, Amit Mittal, Monika Arora, Md S. Suraj, Rajiv Aggarwal Dec 2018

The Basins Of Convergence In The Planar Restricted Four-Body Problem With Variable Mass, Amit Mittal, Monika Arora, Md S. Suraj, Rajiv Aggarwal

Applications and Applied Mathematics: An International Journal (AAM)

We have studied the existence, location and stability of the libration points in the model of restricted four-body problem (R4BP) with variable mass. It is assumed that three primaries, one dominant primary and the other two with equal masses, are always forming an equilateral triangle. We have determined the equations of motion of the above mentioned problem for the fourth body which is an infinitesimal mass. The libration points have been determined numerically for different values of the parameters considered. It is found that there are eight or ten libration points out of which six are non-collinear and two or …


Linear Stability Analysis With Solution Patterns Due To Varying Thermal Diffusivity For A Convective Flow In A Porous Medium, Dambaru Bhatta Dec 2018

Linear Stability Analysis With Solution Patterns Due To Varying Thermal Diffusivity For A Convective Flow In A Porous Medium, Dambaru Bhatta

Applications and Applied Mathematics: An International Journal (AAM)

Here we investigate the effect of the vertical rate of change in thermal diffusivity due to a hydrothermal convective flow in a horizontal porous medium. The continuity equation, the heat equation and the momentum-Darcy equation constitute the governing system for the flow in a porous medium. Assuming a vertically varying basic state, we derive the linear system and from this linear system, we compute the critical Rayleigh and wave numbers. Using fourth-order Runge-Kutta and shooting methods, we obtain the marginal stability curves and linear solutions to analyze the solution pattern for different diffusivity parameters.


Restricted Three-Body Problem Under The Effect Of Albedo When Smaller Primary Is A Finite Straight Segment, Shipra Chauhan, Dinesh Kumar, Bhavneet Kaur Dec 2018

Restricted Three-Body Problem Under The Effect Of Albedo When Smaller Primary Is A Finite Straight Segment, Shipra Chauhan, Dinesh Kumar, Bhavneet Kaur

Applications and Applied Mathematics: An International Journal (AAM)

This paper addresses the dynamics of the infinitesimal body in the restricted three-body problem under the effect of Albedo when the smaller primary is a finite straight segment and bigger one is a source of radiation. The measure of diffusive reflection of solar radiation out of the total solar radiation received by a body is Albedo which is measured on a scale from 0 to 1. The equations of motion of the infinitesimal body are derived and it is found that there exist five libration points, out of which three are collinear and the rest are non-collinear with the primaries. …


Two Applications Of High Order Methods: Wave Propagation And Accelerator Physics, Oleksii Beznosov Nov 2018

Two Applications Of High Order Methods: Wave Propagation And Accelerator Physics, Oleksii Beznosov

Shared Knowledge Conference

Numerical simulations of partial differential equations (PDE) are used to predict the behavior of complex physics phenomena when the real life experiments are expensive. Discretization of a PDE is the representation of the continuous problem as a discrete problem that can be solved on a computer. The discretization always introduces a certain inaccuracy caused by the numerical approximation. By increasing the computational cost of the numerical algorithm the solution can be computed more accurately. In the theory of numerical analysis this fact is called the convergence of the numerical algorithm. The idea behind high order methods is to improve the …


Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole Oct 2018

Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole

Masters Theses

This thesis presents the development towards a system that can capture and quantify motion for applications in biomechanical and medical fields demanding precision motion tracking using the lighthouse technology. Commercially known as SteamVR tracking, the lighthouse technology is a motion tracking system developed for virtual reality applications that makes use of patterned infrared light sources to highlight trackers (objects embedded with photodiodes) to obtain their pose or spatial position and orientation. Current motion capture systems such as the camera-based motion capture are expensive and not readily available outside of research labs. This thesis provides a case for low-cost motion capture …


Conformal Mapping Improvement Of The Boundary Element Method Solution For Underground Water Flow In A Domain With A Very Singular Boundary, Megan Romero Aug 2018

Conformal Mapping Improvement Of The Boundary Element Method Solution For Underground Water Flow In A Domain With A Very Singular Boundary, Megan Romero

UNLV Theses, Dissertations, Professional Papers, and Capstones

Numerical solutions using a Boundary Element Method (BEM) for a confined flow in a very singular finite domain are developed. Typically, in scientific journal publications, authors avoid domains with many and more malignant singularities due to the extremely big and difficult to estimate errors in the numerical calculations. Using exact Conformal Mapping solutions for simplified domains with the same singularity as in the original domain, this problem can be solved numerically with improvements introduced by Conformal Mapping solutions. Firstly, to experiment with improving the BEM solution by Conformal Mapping, a domain inside a rectangle is considered. The exact solution inside …


New Mechanism For Accelerated Removal Of Excess Radiogenic Heat, Russell Humphreys Jul 2018

New Mechanism For Accelerated Removal Of Excess Radiogenic Heat, Russell Humphreys

Proceedings of the International Conference on Creationism

In a technical paper (Humphreys, 2014), I presented Biblical and scientific evidence that (a) space is a physical material that we do not perceive, (b) this fabric of space, and objects within it, are thin in a 4th spatial direction we do not ordinarily perceive, and (c) the fabric is surrounded by a hyperspace of four spatial dimensions. End note 27 of the paper explained that light emitted by objects within the fabric ordinarily would be constrained to travel entirely within the fabric. The end note also proposed that under certain extraordinary conditions the Bible calls the opening of the …


Reduced Models Of Point Vortex Systems In Quasigeostrophic Fluid Dynamics, Jonathan Maack Jul 2018

Reduced Models Of Point Vortex Systems In Quasigeostrophic Fluid Dynamics, Jonathan Maack

Doctoral Dissertations

We develop a nonequilibrium statistical mechanical description of the evolution of point vortex systems governed by either the Euler, single-layer quasigeostrophic or two-layer quasigeostrophic equations. Our approach is based on a recently proposed optimal closure procedure for deriving reduced models of Hamiltonian systems. In this theory the statistical evolution is kept within a parametric family of distributions based on the resolved variables chosen to describe the macrostate of the system. The approximate evolution is matched as closely as possible to the true evolution by minimizing the mean-squared residual in the Liouville equation, a metric which quantifies the information loss rate …


Finite Element Solution Of The Two-Dimensional Incompressible Navier-Stokes Equations Using Matlab, Endalew G. Tsega, V. K. Katiyar Jun 2018

Finite Element Solution Of The Two-Dimensional Incompressible Navier-Stokes Equations Using Matlab, Endalew G. Tsega, V. K. Katiyar

Applications and Applied Mathematics: An International Journal (AAM)

The Navier–Stokes equations are fundamental in fluid mechanics. The finite element method has become a popular method for the solution of the Navier-Stokes equations. In this paper, the Galerkin finite element method was used to solve the Navier-Stokes equations for two-dimensional steady flow of Newtonian and incompressible fluid with no body forces using MATLAB. The method was applied to the lid-driven cavity problem. The eight-noded rectangular element was used for the formulation of element equations. The velocity components were located at all of 8 nodes and the pressure variable is located at 4 corner of the element. From location of …


Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela Jun 2018

Simulating The Electrical Properties Of Random Carbon Nanotube Networks Using A Simple Model Based On Percolation Theory, Roberto Abril Valenzuela

Physics

Carbon nanotubes (CNTs) have been subject to extensive research towards their possible applications in the world of nanoelectronics. The interest in carbon nanotubes originates from their unique variety of properties useful in nanoelectronic devices. One key feature of carbon nanotubes is that the chiral angle at which they are rolled determines whether the tube is metallic or semiconducting. Of main interest to this project are devices containing a thin film of randomly arranged carbon nanotubes, known as carbon nanotube networks. The presence of semiconducting tubes in a CNT network can lead to a switching effect when the film is electro-statically …


Generalized Problem Of Thermal Bending Analysis In The Cartesian Domain, V. S. Kulkarni, Vinayaki Parab Jun 2018

Generalized Problem Of Thermal Bending Analysis In The Cartesian Domain, V. S. Kulkarni, Vinayaki Parab

Applications and Applied Mathematics: An International Journal (AAM)

This is an attempt for mathematical formulation and general analytical solution of the most generalized thermal bending problem in the Cartesian domain. The problem has been formulated in the context of non-homogeneous transient heat equation subjected to Robin’s boundary conditions. The general solution of the generalized thermoelastic problem has been discussed for temperature change, displacements, thermal stresses, deflection, and deformation. The most important feature of this work is any special case of practical interest may be readily obtained by this most generalized mathematical formulation and its analytical solution. There are 729 such combinations of possible boundary conditions prescribed on parallelepiped …


Resonance In The Motion Of A Geocentric Satellite Due To Poynting-Robertson Drag, Charanpreet Kaur, Binay K. Sharma, L. P. Pandey Jun 2018

Resonance In The Motion Of A Geocentric Satellite Due To Poynting-Robertson Drag, Charanpreet Kaur, Binay K. Sharma, L. P. Pandey

Applications and Applied Mathematics: An International Journal (AAM)

The problem of resonance in a geocentric Satellite under the combined gravitational forces of the Sun and the Earth due to Poynting-Robertson (P-R) drag has been discussed in this paper with the assumption that all three bodies, the Earth, the Sun and the Satellite, lie in an ecliptic plane. Our approach differs from conventional ones as we have placed evaluated velocity of the Satellite in equations of motion.We observed five resonance points commensurable between the mean motion of the Satellite and the average angular velocity of the Earth around the Sun, out of which two resonances occur only due to …


Patient-Specific Multiscale Computational Fluid Dynamics Assessment Of Embolization Rates In The Hybrid Norwood: Effects Of Size And Placement Of The Reverse Blalock–Taussig Shunt, Ray Prather, John Seligson, Marcus Ni, Eduardo Divo, Alain J. Kassab, William Decampli May 2018

Patient-Specific Multiscale Computational Fluid Dynamics Assessment Of Embolization Rates In The Hybrid Norwood: Effects Of Size And Placement Of The Reverse Blalock–Taussig Shunt, Ray Prather, John Seligson, Marcus Ni, Eduardo Divo, Alain J. Kassab, William Decampli

Publications

The hybrid Norwood operation is performed to treat hypoplastic left heart syndrome. Distal arch obstruction may compromise flow to the brain. In a variant of this procedure, a synthetic graft (reverse Blalock–Taussig shunt) is placed between the pulmonary trunk and innominate artery to improve upper torso blood flow. Thrombi originating in the graft may embolize to the brain. In this study, we used computational fluid dynamics and particle tracking to investigate the patterns of particle embolization as a function of the anatomic position of the reverse Blalock–Taussig shunt. The degree of distal arch obstruction and position of particle origin influence …


Risk Assessment Of Dropped Cylindrical Objects In Offshore Operations, Adelina Steven May 2018

Risk Assessment Of Dropped Cylindrical Objects In Offshore Operations, Adelina Steven

University of New Orleans Theses and Dissertations

Dropped object are defined as any object that fall under its own weight from a previously static position or fell due to an applied force from equipment or a moving object. It is among the top ten causes of injuries and fatality in oil and gas industry. To solve this problem, several in-house tools and guidelines is developed over time to assess the risk of dropped objects on the sub-sea structures. This thesis focuses on compiling and comparing those methods in hope to improve the recommended practices available in the market. A simple modification is done on the in-house tools …


The Computational Study Of Fly Swarms & Complexity, Austin Bebee May 2018

The Computational Study Of Fly Swarms & Complexity, Austin Bebee

Senior Theses

A system is considered complex if it is composed of individual parts that abide by their own set of rules, while the system, as a whole, will produce non-deterministic properties. This prevents the behavior of such systems from being accurately predicted. The motivation for studying complexity spurs from the fact that it is a fundamental aspect of innumerable systems. Among complex systems, fly swarms are relatively simple, but even so they are still not well understood. In this research, several computational models were developed to assist with the understanding of fly swarms. These models were primarily analyzed by using the …


Physical Applications Of The Geometric Minimum Action Method, George L. Poppe Jr. May 2018

Physical Applications Of The Geometric Minimum Action Method, George L. Poppe Jr.

Dissertations, Theses, and Capstone Projects

This thesis extends the landscape of rare events problems solved on stochastic systems by means of the \textit{geometric minimum action method} (gMAM). These include partial differential equations (PDEs) such as the real Ginzburg-Landau equation (RGLE), the linear Schroedinger equation, along with various forms of the nonlinear Schroedinger equation (NLSE) including an application towards an ultra-short pulse mode-locked laser system (MLL).

Additionally we develop analytical tools that can be used alongside numerics to validate those solutions. This includes the use of instanton methods in deriving state transitions for the linear Schroedinger equation and the cubic diffusive NLSE.

These analytical solutions are …


Godunov-Type Upwind Flux Schemes Of The Two-Dimensional Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura Schaefer May 2018

Godunov-Type Upwind Flux Schemes Of The Two-Dimensional Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura Schaefer

Publications

A simple unified Godunov-type upwind approach that does not need Riemann solvers for the flux calculation is developed for the finite volume discrete Boltzmann method (FVDBM) on an unstructured cell-centered triangular mesh. With piecewise-constant (PC), piecewise-linear (PL) and piecewise-parabolic (PP) reconstructions, three Godunov-type upwind flux schemes with different orders of accuracy are subsequently derived. After developing both a semi-implicit time marching scheme tailored for the developed flux schemes, and a versatile boundary treatment that is compatible with all of the flux schemes presented in this paper, numerical tests are conducted on spatial accuracy for several single-phase flow problems. Four major …


Power Corrections To Tmd Factorization For Z-Boson Production, I. Balitsky, A. Tatasov May 2018

Power Corrections To Tmd Factorization For Z-Boson Production, I. Balitsky, A. Tatasov

Physics Faculty Publications

A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this paper we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in Nc power corrections are expressed in …


The Advection-Diffusion Equation And The Enhanced Dissipation Effect For Flows Generated By Hamiltonians, Michael Kumaresan May 2018

The Advection-Diffusion Equation And The Enhanced Dissipation Effect For Flows Generated By Hamiltonians, Michael Kumaresan

Dissertations, Theses, and Capstone Projects

We study the Cauchy problem for the advection-diffusion equation when the diffusive parameter is vanishingly small. We consider two cases - when the underlying flow is a shear flow, and when the underlying flow is generated by a Hamiltonian. For the former, we examine the problem on a bounded domain in two spatial variables with Dirichlet boundary conditions. After quantizing the system via the Fourier transform in the first spatial variable, we establish the enhanced-dissipation effect for each mode. For the latter, we allow for non-degenerate critical points and represent the orbits by points on a Reeb graph, with vertices …


The Pope's Rhinoceros And Quantum Mechanics, Michael Gulas Apr 2018

The Pope's Rhinoceros And Quantum Mechanics, Michael Gulas

Honors Projects

In this project, I unravel various mathematical milestones and relate them to the human experience. I show and explain the solution to the Tautochrone, a popular variation on the Brachistochrone, which details a major battle between Leibniz and Newton for the title of inventor of Calculus. One way to solve the Tautochrone is using Laplace Transforms; in this project I expound on common functions that get transformed and how those can be used to solve the Tautochrone. I then connect the solution of the Tautochrone to clock making. From this understanding of clocks, I examine mankind’s understanding of time and …


Atmospheric Radiation And Tgfs: Unexplained Radiation In Our Skies, Adrian Gallegos Apr 2018

Atmospheric Radiation And Tgfs: Unexplained Radiation In Our Skies, Adrian Gallegos

Honors College Research

There is a significant correlation between atmospheric electrification via thunderstorms and the occurrence of large emissions of x-ray and gamma ray radiation known as Terrestrial Gamma Ray Flashes (TGFs). Some physical phenomenon may be explained by either the RREA or Thermal Runaway models, but the scientific community as a whole is still largely at work on the theoretical frameworks.


Power-Law Scaling Of Extreme Dynamics Near Higher-Order Exceptional Points, Q. Zhong, Demetrios N. Christodoulides, M. Khajavikhan, K. G. Makris, Ramy El-Ganainy Apr 2018

Power-Law Scaling Of Extreme Dynamics Near Higher-Order Exceptional Points, Q. Zhong, Demetrios N. Christodoulides, M. Khajavikhan, K. G. Makris, Ramy El-Ganainy

Ramy El-Ganainy

We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other …


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson Apr 2018

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations. …


Power-Law Scaling Of Extreme Dynamics Near Higher-Order Exceptional Points, Q. Zhong, Demetrios N. Christodoulides, M. Khajavikhan, K. G. Makris, Ramy El-Ganainy Feb 2018

Power-Law Scaling Of Extreme Dynamics Near Higher-Order Exceptional Points, Q. Zhong, Demetrios N. Christodoulides, M. Khajavikhan, K. G. Makris, Ramy El-Ganainy

Department of Physics Publications

We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other …