Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Optimization Of Chemical Vapor Deposition Grown Graphene, Andrew Tan May 2014

Optimization Of Chemical Vapor Deposition Grown Graphene, Andrew Tan

Senior Theses

Graphene can be used as the active film in a gas sensor. To provide the best possible electrical properties, it is important that graphene films be single-layered and single-crystalline. A low vacuum chemical vapor deposition (CVD) chamber was constructed to grow graphene with these properties. The effect of growth parameters, such as annealing times and methane partial pressure, on the quality of graphene was investigated. Raman spectra of graphene were used to quantify the characteristics of the synthesized graphene. Graphene synthesized through CVD has two major peaks, the G (~1570cm-1) and the 2D peak (~2700 cm-1). …


Improved Protocols For Vibrational Spectroscopic Analysis Of Body Fluids, Franck Bonnier, François Petitjean, Matthew Baker, Hugh Byrne Mar 2014

Improved Protocols For Vibrational Spectroscopic Analysis Of Body Fluids, Franck Bonnier, François Petitjean, Matthew Baker, Hugh Byrne

Articles

The applications of vibrational spectroscopy to the examination of human blood serum are explored. Although FTIR spectra can be recorded in aqueous solutions at (gelatin) concentrations as low as 100mg/L, the high-wavenumber region remains obscured by water absorption. Using Raman spectroscopy, high quality spectra of gelatine solutions as low as 10mg/L can be achieved, also covering the high-wavenumber regions. In human serum, spectral profiles are weak and partially obscured by water features. Dried deposits are shown to be physically and chemically inhomogeneous resulting in reduced measurement reproducibility. Concentration of the serum using commercially available centrifugal filter devices results in an …


Structural Characterization Of Atomically Thin Hexagonal Boron Nitride Via Raman Spectroscopy, James M. Bondy Mar 2014

Structural Characterization Of Atomically Thin Hexagonal Boron Nitride Via Raman Spectroscopy, James M. Bondy

Theses and Dissertations

A non-destruction evaluation of atomically thin hexagonal boron nitride (h-BN) films is critical to the U.S. Air Force and Department of Defense initiatives pursuing graphene-based electronic field effect transistors (FETs) capable of operating at terahertz frequencies. H-BN thin films an increase to the characteristic E2g 1367cm-1 h-BN peak intensity has been correlated to an increase in film thickness. Raman spectroscopy on a h-BN film with thicknesses of 7, 14, and 21 atoms (2.5nm, 5nm, 7.5nm respectively) revealed a linear relationship between peak intensity and thickness. This relationship can mathematically be described as y=0.0265x+0.8084, and fits the data with a R2 …


Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi Jan 2014

Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi

Legacy Theses & Dissertations (2009 - 2024)

The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of …