Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Series

Impact Ionization

Articles 1 - 5 of 5

Full-Text Articles in Physics

Theoretical And Experimental (E, 2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms, Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison Dec 2014

Theoretical And Experimental (E, 2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms, Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We have performed calculations of the fully differential cross sections for electron-impact ionization of magnesium atoms. Three theoretical approximations, the time-dependent close coupling, the three-body distorted wave, and the distorted wave Born approximation, are compared with experiment in this article. Results will be shown for ionization of the 3s ground state of Mg for both asymmetric and symmetric coplanar geometries. Results will also be shown for ionization of the 3p state which has been excited by a linearly polarized laser which produces a charge cloud aligned perpendicular to the laser beam direction and parallel to the linear polarization. Theoretical and …


Theoretical And Experimental Investigation Of (E, 2e) Ionization Of Argon 3p In Asymmetric Kinematics At Intermediate Energy, Sadek Amami, Melike Ulu, Zehra Nur Ozer, Murat Yavuz, Suay Kazgoz, Mevlut Dogan, Oleg Zatsarinny, Klaus Bartschat, Don H. Madison Jul 2014

Theoretical And Experimental Investigation Of (E, 2e) Ionization Of Argon 3p In Asymmetric Kinematics At Intermediate Energy, Sadek Amami, Melike Ulu, Zehra Nur Ozer, Murat Yavuz, Suay Kazgoz, Mevlut Dogan, Oleg Zatsarinny, Klaus Bartschat, Don H. Madison

Physics Faculty Research & Creative Works

The field of electron-impact ionization of atoms, or (e, 2e), has provided significant detailed information about the physics of collisions. For ionization of hydrogen and helium, essentially exact numerical methods have been developed which can correctly predict what will happen. For larger atoms, we do not have theories of comparable accuracy. Considerable attention has been given to ionization of inert gases and, of the inert gases, argon seems to be the most difficult target for theory. There have been several studies comparing experiment and perturbative theoretical approaches over the last few decades, and generally qualitative but not quantitative agreement is …


Fully Differential Cross Sections For Electron-Impact Excitation-Ionization Of Aligned D₂, Esam Ali, A. L. Harris, J. Lower, E. Weigold, Chuang-Gang Ning, Don H. Madison Jun 2014

Fully Differential Cross Sections For Electron-Impact Excitation-Ionization Of Aligned D₂, Esam Ali, A. L. Harris, J. Lower, E. Weigold, Chuang-Gang Ning, Don H. Madison

Physics Faculty Research & Creative Works

We examine fully differential cross sections for 176 eV electron-impact dissociative excitation-ionization of orientated D2 for transitions to final ion states 2sσg, 2pσu, and 2pπu. In previous work [Phys. Rev. A 88, 062705 (2013)PLRAAN1050-294710.1103/PhysRevA.88.062705], we calculated these cross sections using the molecular four-body distorted wave (M4DW) method with the ground-state D2 wave function being approximated by a product of two Dyson 1s-type orbitals. The theoretical results were compared with experimental measurements for five different orientations of the target molecule (four in the scattering plane and one perpendicular to the scattering plane). For the unresolved …


Theoretical Triple-Differential Cross Sections Of A Methane Molecule By A Proper-Average Method, Hari Chaluvadi, C. G. Ning, Don H. Madison Jun 2014

Theoretical Triple-Differential Cross Sections Of A Methane Molecule By A Proper-Average Method, Hari Chaluvadi, C. G. Ning, Don H. Madison

Physics Faculty Research & Creative Works

For the last few years, our group has calculated cross sections for electron-impact ionization of molecules using the molecular three-body distorted-wave approximation coupled with the orientation-averaged molecular orbital (OAMO) approximation. This approximation was very successful for calculating ionization cross sections for hydrogen molecules and to a lesser extent nitrogen molecules. Recently we used the approximation to calculate single ionization cross sections for the 1t2 state of methane (CH4) and we found major discrepancies with the experimental data. Here we investigate the validity of the OAMO approximation by calculating cross sections that have been properly averaged over all …


Dynamical (E,2e) Studies Of Tetrahydropyran And 1,4-Dioxane, J. D. Builth-Williams, G. Da Silva, L. Chiari, D. B. Jones, Hari Chaluvadi, Don H. Madison, M. J. Brunger Jan 2014

Dynamical (E,2e) Studies Of Tetrahydropyran And 1,4-Dioxane, J. D. Builth-Williams, G. Da Silva, L. Chiari, D. B. Jones, Hari Chaluvadi, Don H. Madison, M. J. Brunger

Physics Faculty Research & Creative Works

We present experimental and theoretical results for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane. Using an (e,2e) technique in asymmetric coplanar kinematics, angular distributions of the slow ejected electron, with an energy of 20 eV, are measured when incident electrons at 250 eV ionize the target and scatter through an angle of either -10° or -15°. The data are compared with calculations performed at the molecular 3-body distorted wave level. Fair agreement between the theoretical model and the experimental measurements was observed. The similar structures for these targets provide key insights for assessing the …