Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Pinhole Neutral Atom Microscopy, Philip James Witham Jul 2013

Pinhole Neutral Atom Microscopy, Philip James Witham

Dissertations and Theses

This work presents a new form of microscopy, the instrument constructed to demonstrate it, the images produced and the image contrast mechanisms seen for the first time. Some of its future scientific potential is described and finally, recent work towards advancing the method is discussed.

Many forms of microscopy exist, each with unique advantages. Of several broad categories that they could be grouped into, those that use particle beams have proven very generally useful for micro and nano-scale imaging, including Scanning Electron, Transmission Electron, and Ion Beam microscopes. These have the disadvantage, however, of implanting electric charges into the sample, …


Crystallographic Image Processing With Unambiguous 2d Bravais Lattice Identification On The Basis Of A Geometric Akaike Information Criterion, Taylor Thomas Bilyeu Jul 2013

Crystallographic Image Processing With Unambiguous 2d Bravais Lattice Identification On The Basis Of A Geometric Akaike Information Criterion, Taylor Thomas Bilyeu

Dissertations and Theses

Crystallographic image processing (CIP) is a technique first used to aid in the structure determination of periodic organic complexes imaged with a high-resolution transmission electron microscope (TEM). The technique has subsequently been utilized for TEM images of inorganic crystals, scanning TEM images, and even scanning probe microscope (SPM) images of two-dimensional periodic arrays. We have written software specialized for use on such SPM images. A key step in the CIP process requires that an experimental image be classified as one of only 17 possible mathematical plane symmetry groups. The current methods used for making this symmetry determination are not entirely …