Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

Electromagnetics and Photonics

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 49

Full-Text Articles in Physics

Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano Oct 2013

Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano

Dissertations and Theses

The kinematics and dynamics for plane wave optics are derived for a massive electrodynamic field by utilizing Proca's theory. Atomic spectroscopy is also examined, with the focus on the 21 cm radiation due to the hyperfine structure of hydrogen. The modifications to Snell's Law, the Fresnel formulas, and the 21 cm radiation are shown to reduce to the familiar expressions in the limit of zero photon mass.


Harmonic Generation In Multiresonant Plasma Films, Maria Antonietta Vincenti, Domenico De Ceglia, Joseph W. Haus, Michael Scalora Oct 2013

Harmonic Generation In Multiresonant Plasma Films, Maria Antonietta Vincenti, Domenico De Ceglia, Joseph W. Haus, Michael Scalora

Electrical and Computer Engineering Faculty Publications

We investigate second- and third-harmonic generation in a slab of material that displays plasma resonances at the pump and its harmonic frequencies. Near-zero refractive indices and local field enhancement can deplete the pump for kW/cm2 incident powers, without resorting to other resonant photonic mechanisms. We show that low-threshold, highly efficient nonlinear processes are possible in the presence of losses and phase mismatch in structures that are 104 times shorter than typical nonlinear crystals, for relatively low irradiance values.


Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi Sep 2013

Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

A series of recent studies involving hybrid acousto-optic (AO) scattering in the Bragg domain under first-order feedback have shown the ability of the AO feedback system to encrypt, transmit and decrypt RF information applied via the sound driver. The basic premise of this operation is founded on the chaotic nature of the hybrid Bragg cell under feedback.


Ground State Of The Singly Ionized Oxygen Vacancy In Rutile Tio2, A. T. Brant, Nancy C. Giles, Shan Yang (杨山), M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton Sep 2013

Ground State Of The Singly Ionized Oxygen Vacancy In Rutile Tio2, A. T. Brant, Nancy C. Giles, Shan Yang (杨山), M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton

Faculty Publications

Results from electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) experiments are used to establish the model for the ground state of the singly ionized oxygen vacancy in the interior of bulk rutile TiO2 crystals. Hyperfine from 47Ti and 49Ti nuclei show that the unpaired electron in this S = 1/2 defect is localized on one titanium ion adjacent to the oxygen vacancy (i.e., the spin is not shared by two titanium ions). These defects are formed at low temperature (∼35 K) in as-grown oxidized crystals when sub-band-gap 442 nm laser light converts doubly ionized nonparamagnetic …


Investigation Of Negative Index In Dispersive, Chiral Materials Via Contra-Propagating Velocities Under Second-Order Dispersion (Gvd), Monish Ranjan Chatterjee, Tarig A. Algadey Aug 2013

Investigation Of Negative Index In Dispersive, Chiral Materials Via Contra-Propagating Velocities Under Second-Order Dispersion (Gvd), Monish Ranjan Chatterjee, Tarig A. Algadey

Electrical and Computer Engineering Faculty Publications

Negative refractive index arises typically in metamaterials via multiple routes. One such avenue is the condition where the Poynting vector of the electromagnetic wave is in opposition to the group velocity in the material. An earlier work along this route in a chiral material led to the well-known result of requiring very large (non-realizable) chirality.

Thereafter, a combination of chirality together with first-order dispersion was examined using plane wave electromagnetic analysis. To arrive at the conclusions in that approach, the three wave velocities (energy, group and phase) were derived under first-order dispersion in permittivity, permeability and chirality. Negative index in …


Numerical Examination Of Acousto-Optic Bragg Interactions For Profiled Lightwaves Using A Transfer Function Formalism, Monish Ranjan Chatterjee, Fares S. Almehmadi Aug 2013

Numerical Examination Of Acousto-Optic Bragg Interactions For Profiled Lightwaves Using A Transfer Function Formalism, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

Classically, acousto-optic (AO) interactions comprise scattering of photons by energetic phonons into higher and lower orders. Standard weak interaction theory describes diffraction in the Bragg regime as the propagation of a uniform plane wave of light through a uniform plane wave of sound, resulting in the well-known first- and zeroth-order diffraction.

Our preliminary investigation of the nature of wave diffraction and photon scattering from a Bragg cell under intensity feedback with profiled light beams indicates that the diffracted (upshifted photon) light continues to maintain the expected (uniform plane wave) behavior versus the optical phase shift in the cell within a …


Adaptive Wiener Filter Super-Resolution Of Color Filter Array Images, Barry K. Karch, Russell C. Hardie Aug 2013

Adaptive Wiener Filter Super-Resolution Of Color Filter Array Images, Barry K. Karch, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method …


Study Of A Non-Equilibrium Plasma Pinch With Application For Microwave Generation, Ahmad Al Agry Aug 2013

Study Of A Non-Equilibrium Plasma Pinch With Application For Microwave Generation, Ahmad Al Agry

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Non-Equilibrium Plasma Pinch (NEPP), also known as the Dense Plasma Focus (DPF) is well known as a source of energetic ions, relativistic electrons and neutrons as well as electromagnetic radiation extending from the infrared to X-ray. In this dissertation, the operation of a 15 kJ, Mather type, NEPP machine is studied in detail. A large number of experiments are carried out to tune the machine parameters for best performance using helium and hydrogen as filling gases. The NEPP machine is modified to be able to extract the copious number of electrons generated at the pinch. A hollow anode with …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …


Nanowire Metal-Insulator-Metal Plasmonic Devices, Joseph W. Haus, Li Li, Cong Deng, Nkorni Katte, Michael Scalora, Domenico De Ceglia, Maria Antonietta Vincenti May 2013

Nanowire Metal-Insulator-Metal Plasmonic Devices, Joseph W. Haus, Li Li, Cong Deng, Nkorni Katte, Michael Scalora, Domenico De Ceglia, Maria Antonietta Vincenti

Electro-Optics and Photonics Faculty Publications

In this paper we theoretically study the responsivity of Metal-Insulator-Metal nanostructures to light illumination over a broad wavelength band (1 - 25 microns) and we examine the role of a local field enhancement and electrostatic field on the responsivity.


Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof Apr 2013

Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof

Radhey Shyam Meena

World cannot be imagined without electrical power. Generally the power is transmitted through transmission networks. This paper describes an original idea to eradicate the hazardous usage of electrical wires which involve lot of confusion in particularly organizing them. Imagine a future in which wireless power transfer is feasible: cell phones, household robots, mp3 players, laptop computers and other portable electronic devices capable of charging themselves without ever being plugged in freeing us from that final ubiquitous power wire. This paper includes the techniques of transmitting power without using wires with an efficiency of about 95% with non-radioactivemethods. In this paper …


Reversible Mn Segregation At The Polar Surface Of Lithium Tetraborate, Christina L. Dugan, Robert L. Hengehold, Stephen R. Mchale, Juan A. Colon Santana, John W. Mcclory, Volodymyr T. Adamiv, Yaroslav V. Burak, Ya B. Losovyj, Peter A. Dowben Apr 2013

Reversible Mn Segregation At The Polar Surface Of Lithium Tetraborate, Christina L. Dugan, Robert L. Hengehold, Stephen R. Mchale, Juan A. Colon Santana, John W. Mcclory, Volodymyr T. Adamiv, Yaroslav V. Burak, Ya B. Losovyj, Peter A. Dowben

Faculty Publications

We find Mn surface segregation for single crystals of Mn doped Li2B4O7, nominally Li1.95Mn0.05B4O7(001), but as the temperature increases, evidence of this Mn surface segregation diminishes significantly. At room temperature, the surface photovoltaic charging is significant for this pyroelectric material but is quenched at a temperature well below that seen for the undoped Li2B4O7 samples. The suppression of surface charging in the region of 120 °C that accompanies the temperature of Mn dissolution in the bulk of Li2B4 …


Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er., Deepa Sharma Mar 2013

Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er., Deepa Sharma

Radhey Shyam Meena

Grid-connected solar PV dramatically changes the load profile of an electric utility customer. The expected widespread adoption of solar generation by customers on the distribution system poses significant challenges to system operators both in transient and steady state operation, from issues including voltage swings, sudden weather-induced changes in generation, and legacy protective devices designed with one-way power flow in mind


Insertion Of Lithium Ions Into Tio2 (Rutile) Crystals: An Electron Paramagnetic Resonance Study Of The Li-Associated Ti3+ Small Polaron, A. T. Brant, Nancy C. Giles, Larry E. Halliburton Feb 2013

Insertion Of Lithium Ions Into Tio2 (Rutile) Crystals: An Electron Paramagnetic Resonance Study Of The Li-Associated Ti3+ Small Polaron, A. T. Brant, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify a Ti3+-Li+ complex in TiO2 crystals having the rutile structure. This defect consists of an interstitial Li+ ion adjacent to a substitutional Ti3+ ion (the unpaired electron on the Ti3+ ion provides charge compensation for the Li+ ion). The neutral Ti3+-Li+ complex is best described as a donor-bound small polaron and is similar in structure to the recently reported neutral fluorine and hydrogen donors in TiO2 (rutile). Lithium ions are diffused into the crystals at …


Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er. Jan 2013

Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er.

Radhey Shyam Meena

As solar photovoltaic power generation becomes more commonplace, the inherent intermittency of the solar resource poses one of the great challenges to those who would design and implement the next generation smart grid. Specifically, grid-tied solar power generation is a distributed resource whose output can change extremely rapidly, resulting in many issues for the distribution system operator with a large quantity of installed photovoltaic devices. Battery energy storage systems are increasingly being used to help integrate solar power into the grid. These systems are capable of absorbing and delivering both real and reactive power with sub-second response times. With these …


High Flux Isolated Attosecond Pulse Generation, Yi Wu Jan 2013

High Flux Isolated Attosecond Pulse Generation, Yi Wu

Electronic Theses and Dissertations

This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory. First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest energy level ever achieved by a broadband pulse in a …


Optically Induced Forces In Scanning Probe Microscopy, Dana Kohlgraf-Owens Jan 2013

Optically Induced Forces In Scanning Probe Microscopy, Dana Kohlgraf-Owens

Electronic Theses and Dissertations

The focus of this dissertation is the study of measuring light not by energy transfer as is done with a standard photodetector such as a photographic film or charged coupled device, but rather by the forces which the light exerts on matter. In this manner we are able to replace or complement standard photodetector-based light detection techniques. One key attribute of force detection is that it permits the measurement of light over a very large range of frequencies including those which are difficult to access with standard photodetectors, such as the far IR and THz. The dissertation addresses the specific …


Ytterbium-Doped Fiber-Seeded Thin-Disk Master Oscillator Power Amplifier Laser System, Christina Willis-Ott Jan 2013

Ytterbium-Doped Fiber-Seeded Thin-Disk Master Oscillator Power Amplifier Laser System, Christina Willis-Ott

Electronic Theses and Dissertations

Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 μm ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. …


High Energy, High Average Power, Picosecond Laser Systems To Drive Few-Cycle Opcpa, Andreas Vaupel Jan 2013

High Energy, High Average Power, Picosecond Laser Systems To Drive Few-Cycle Opcpa, Andreas Vaupel

Electronic Theses and Dissertations

The invention of chirped-pulse amplification (CPA) in 1985 led to a tremendous increase in obtainable laser pulse peak intensities. Since then, several table-top, Ti:sapphire-based CPA systems exceeding the 100 TW-level with more than 10 W average power have been developed and several systems are now commercially available. Over the last decade, the complementary technology of optical parametric chirped-pulse amplification (OPCPA) has improved in its performance to a competitive level. OPCPA allows direct amplification of an almost-octave spanning bandwidth supporting few-cycle pulse durations at center wavelengths ranging from the visible to the mid-IR. The current record in peak power from a …


Pulsed Tm-Fiber Laser For Mid-Ir Generation, Pankaj Kadwani Jan 2013

Pulsed Tm-Fiber Laser For Mid-Ir Generation, Pankaj Kadwani

Electronic Theses and Dissertations

The thulium fiber laser has gained interest due to its long emission wavelength, large bandwidth (~1.8 – 2.1 µm), high efficiencies (~60 %), and high output power levels both in cw as well as pulsed regimes. Applications like remote sensing, machining, medical tissue ablation, and mid-infrared generation benefit from high peak power thulium laser sources. Pulsed thulium fiber laser systems are advancing rapidly towards higher peak power levels and are becoming the preferred sources for these applications. This dissertation work describes the development of novel nanosecond pulsed thulium fiber laser systems with record high peak power levels targeting mid-infrared generation. …


Fast-Response Liquid Crystals For Photonic And Display Applications, Jie Sun Jan 2013

Fast-Response Liquid Crystals For Photonic And Display Applications, Jie Sun

Electronic Theses and Dissertations

Liquid crystal devices are attractive for many applications such as information displays, spatial light modulators and adaptive optics, because their optical properties are electrically tunable. However, response time of liquid crystal devices is a serious concern for many applications especially for those who require large phase modulation (≥2π). This is because a thick LC layer is usually needed to achieve a large phase shift while the response time of a nematic LC is highly determined by the cell gap.


Wavelength Scale Resonant Structures For Integrated Photonic Applications, Matthew Weed Jan 2013

Wavelength Scale Resonant Structures For Integrated Photonic Applications, Matthew Weed

Electronic Theses and Dissertations

An approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled cavity systems offer the designer slow light propagation which increases photon lifetime, reduces size limitations toward on-chip integration, and offers enhanced light-matter interaction. A unique resonant structure explained by various numerical models …


The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell Jan 2013

The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell

Electronic Theses and Dissertations

Cubic Zn1-xMgxO (c-Zn1-xMgxO) thin films have opened the deep ultraviolet (DUV) spectrum to exploration by oxide optoelectronic devices. These extraordinary films are readily wet-etch-able, have inversion symmetric lattices, and are made of common and safe constituents. They also host a number of new exciting experimental and theoretical challenges. Here, the relation between growth conditions of the c-Zn1-xMgxO film and performance of fabricated ultraviolet (UV) sensors is investigated. Plasma-Enhanced Molecular Beam Epitaxy was used to grow Zn1-xMgxO thin films and formation conditions were explored by varying the growth temperature, Mg source flux, oxygen flow rate, and radio-frequency (RF) power coupled into …


Growth And Characterization Of Zno Based Semiconductor Materials And Devices, Ming Wei Jan 2013

Growth And Characterization Of Zno Based Semiconductor Materials And Devices, Ming Wei

Electronic Theses and Dissertations

Wide band gap semiconductors such as MgxZn1-xO represent an excellent choice for making optical photodetectors and emitters operating in the UV spectral region. High crystal and optical quality MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and sub-nanometer surface roughness were achieved by applying a low temperature nucleation layer. The critical growth conditions were discussed to obtain a high quality film: the sequence of Zn and O sources for initial growth of nucleation layer, growth temperatures for both ZnO nucleation and …


Optically Isotropic Liquid Crystals For Display And Photonic Applications, Jin Yan Jan 2013

Optically Isotropic Liquid Crystals For Display And Photonic Applications, Jin Yan

Electronic Theses and Dissertations

For the past few decades, tremendous progress has been made on liquid crystal display (LCD) technologies in terms of stability, resolution, contrast ratio, and viewing angle. The remaining challenge is response time. The state-of-the-art response time of a nematic liquid crystal is a few milliseconds. Faster response time is desirable in order to reduce motion blur and to realize color sequential display using RGB LEDs, which triples the optical efficiency and resolution density. Polymer-stabilized blue phase liquid crystal (PS-BPLC) is a strong candidate for achieving fast response time because its self-assembled cubic structure greatly reduces the coherence length. The response …


Inverse Problems In Multiple Light Scattering, John Broky Jan 2013

Inverse Problems In Multiple Light Scattering, John Broky

Electronic Theses and Dissertations

The interaction between coherent waves and material systems with complex optical properties is a complicated, deterministic process. Light that scatters from such media gives rise to random fields with intricate properties. It is common perception that the randomness of these complex fields is undesired and therefore is to be removed, usually through a process of ensemble averaging. However, random fields emerging from light matter interaction contain information about the properties of the medium and a thorough analysis of the scattered light allows solving specific inverse problems. Traditional attempts to solve these kinds of inverse problems tend to rely on statistical …


Fabrication Of Metallic Antenna Arrays Using Nanoimprint Lithography, Yu-Wei Lin Jan 2013

Fabrication Of Metallic Antenna Arrays Using Nanoimprint Lithography, Yu-Wei Lin

Electronic Theses and Dissertations

This Thesis describes the development of a cost-effective process for patterning nanoscale metal antenna arrays. Soft ultraviolet (UV) Nanoimprint Lithography (NIL) into bilayer resist was chosen since it enables repeatable large-scale replication of nanoscale patterns with good lift-off properties using a simple low-cost process. Nanofabrication often involves the use of Electron Beam Lithography (EBL) which enables the definition of nanoscale patterns on small sample regions, typically < 1 mm 2 . However its sequential nature makes the large scale production of nanostructured substrates using EBL cost-prohibitive. NIL is a pattern replication method that can reproduce nanoscale patterns in a parallel fashion, allowing the low-cost and rapid production of a large number of nanopatterned samples based on a single nanostructured master mold. Standard NIL replicates patterns by pressing a nanostructured hard mold into a soft resist layer on a substrate resulting in exposed substrate regions, followed by an optional Reactive Ion Etching (RIE) step and the subsequent deposition of e.g. metal onto the exposed substrate area. However, non-vertical sidewalls of the features in the resist layer resulting from an imperfect hard mold, from reflow of the resist layer, or from isotropic etching in the RIE step iii may cause imperfect lift-off. To overcome this problem, a bilayer resist method can be used. Using stacked resist layers with different etch rates, undercut structures can be obtained after the RIE step, allowing for easy lift-off even when using a mold with non-vertical sidewalls. Experiments were carried out using a nanostructured negative SiO2 master mold. Various material combinations and processing methods were explored. The negative master mold was transferred to a positive soft mold, leaving the original master mold unaltered. The soft mold consisted of a 5 m thick top Poly(methyl methacrylate) (PMMA), or Polyvinyl alcohol (PVA) layer, a 1.5 mm thick Polydimethylsiloxane (PDMS) buffer layer, and a glass supporting substrate. The soft mold was pressed into a bilayer of 300 nm PMMA and 350 nm of silicon based UV-curable resist that was spin-coated onto a glass slide, and cured using UV radiation. The imprinted patterns were etched using RIE, exposing the substrate, followed by metal deposition and lift-off. The experiments show that the use of soft molds enables successful pattern transfer even in the presence of small dust particles between the mold and the resist layer. Feature sizes down to 280 nm were replicated successfully


External Cavity Mode-Locked Semiconductor Lasers For The Generation Of Ultra-Low Noise Multi-Gigahertz Frequency Combs And Applications In Multi-Heterodyne Detection Of Arbitrary Optical Waveforms, Josue Davila-Rodriguez Jan 2013

External Cavity Mode-Locked Semiconductor Lasers For The Generation Of Ultra-Low Noise Multi-Gigahertz Frequency Combs And Applications In Multi-Heterodyne Detection Of Arbitrary Optical Waveforms, Josue Davila-Rodriguez

Electronic Theses and Dissertations

The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-Pérot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of


Absorptive And Refractive Optical Nonlinearities In Organic Molecules And Semiconductors, Davorin Peceli Jan 2013

Absorptive And Refractive Optical Nonlinearities In Organic Molecules And Semiconductors, Davorin Peceli

Electronic Theses and Dissertations

The main purpose of this dissertation to investigate photophysical properties, third order nonlinearity and free carrier absorption and refraction in organic materials and semiconductors. Special emphasis of this dissertation is on characterization techniques of molecules with enhanced intersystem crossing rate and study of different approaches of increasing triplet quantum yield in organic molecules. Both linear and nonlinear characterization methods are described. Linear spectroscopic characterization includes absorption, fluorescence, quantum yield, anisotropy, and singletoxygen generation measurements. Nonlinear characterization, performed by picosecond and femtosecond laser systems (single and double pump-probe and Z-scan measurements), includes measurements of the triplet quantum yields, excited-state absorption, two-photon …


Injection Locking Of Semiconductor Mode-Locked Lasers For Long-Term Stability Of Widely Tunable Frequency Combs, Charles Williams Jan 2013

Injection Locking Of Semiconductor Mode-Locked Lasers For Long-Term Stability Of Widely Tunable Frequency Combs, Charles Williams

Electronic Theses and Dissertations

Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall stabilization or by polarization spectroscopy. Error signals of both techniques are simulated and compared to experimentally obtained signals. Frequency combs spaced by 2.5 GHz and ~10 GHz are generated, with demonstrated optical sidemode suppression of unwanted …