Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Understanding Nanoparticle-Cell Interaction, Ran Chen Dec 2012

Understanding Nanoparticle-Cell Interaction, Ran Chen

All Dissertations

Nanotechnology has revolutionalized the landscape of modern science and technology, including materials, electronics, therapeutics, bioimaging, sensing, and the environment. Along with these technological advancements, there arises a concern that engineered nanomaterials, owing to their high surface area and high reactivity, may exert adverse effects upon discharge to compromise biological and ecological systems. Research in the past decade has examined the fate of nanomaterials in vitro and in vivo, as well as the interactions between nanoparticles and biological and ecosystems using primarily toxicological and ecotoxicological approaches. However, due to the versatility in the physical and physicochemical properties of nanoparticles, and due …


Nanoscale Surface Patterning And Applications: Using Top-Down Patterning Methods To Aid Bottom-Up Fabrication, Anthony Craig Pearson Aug 2012

Nanoscale Surface Patterning And Applications: Using Top-Down Patterning Methods To Aid Bottom-Up Fabrication, Anthony Craig Pearson

Theses and Dissertations

Bottom-up self-assembly can be used to create structures with sub-20 nm feature sizes or materials with advanced electrical properties. Here I demonstrate processes to enable such self-assembling systems including block copolymers and DNA origami, to be integrated into nanoelectronic devices. Additionally, I present a method which utilizes the high stability and electrical conductivity of graphene, which is a material formed using a bottom-up growth process, to create archival data storage devices. Specifically, I show a technique using block copolymer micelle lithography to fabricate arrays of 5 nm gold nanoparticles, which are chemically modified with a single-stranded DNA molecule and used …


Probing And Controlling Fluid Rheology At Microscale With Magnetic Nanorods, Alexander Tokarev Aug 2012

Probing And Controlling Fluid Rheology At Microscale With Magnetic Nanorods, Alexander Tokarev

All Dissertations

This Dissertation is focused on the development of new methods for characterization and control of fluid rheology using magnetic nanorods. This Dissertation consists of five chapters. In the first chapter, we review current microrheologial methods and develop a Magnetic Rotational Spectroscopy (MRS) model describing nanorod response to a rotating magnetic field. Using numerical modeling, we analyze the effects of materials parameters of nanorods and fluids on the MRS characteristic features. The model is designed for a specific experimental protocol. We introduce and examine physical parameters which can be measured experimentally. The model allows identification of MRS features enabling the calculation …


Growth And Characterization Of Functional Nanoparticulate Films By A Microwave Plasma-Assisted Spray Deposition Process, Ted Wangensteen Jan 2012

Growth And Characterization Of Functional Nanoparticulate Films By A Microwave Plasma-Assisted Spray Deposition Process, Ted Wangensteen

USF Tampa Graduate Theses and Dissertations

Nanoparticle and nanoparticulate films have been grown by a unique approach combining a microwave and nebulized droplets where the concentration and thus the resulting particle size can be controlled. The goal of such a scalable approach was to achieve it with the least number of steps, and without using expensive high purity chemicals or the precautions necessary to work with such chemicals. This approach was developed as a result of first using a laser unsuccessfully to achieve the desired films and particles. Some problems with the laser approach for growing desired films were solved by substituting the higher energy microwave …