Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Applied Mathematics

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 58

Full-Text Articles in Physics

Petawatt-Laser-Driven Wakefield Acceleration Of Electrons To 2 Gev In 10^{17} Cm^{-3} Plasma, Xiaoming Wang, Rafal B. Zgadzaj, Neil Fazel, Sunghwan A. Yi, X. Zhang, Watson Henderson, Yen-Yu Zhang, Rick Korzekwa, Hai-En Tsai, C.-H. Pai, Zhengyan Li, Hernan Quevedo, Gilliss Dyer, Erhard W. Gaul, Mikael Martinez, Aaron Bernstein, Ted Borger, M. Spinks, M. Donovan, Serguei Y. Kalmykov, Vladimir N. Khudik, Gennady Shvets, Todd Ditmire, Michael C. Downer Dec 2012

Petawatt-Laser-Driven Wakefield Acceleration Of Electrons To 2 Gev In 10^{17} Cm^{-3} Plasma, Xiaoming Wang, Rafal B. Zgadzaj, Neil Fazel, Sunghwan A. Yi, X. Zhang, Watson Henderson, Yen-Yu Zhang, Rick Korzekwa, Hai-En Tsai, C.-H. Pai, Zhengyan Li, Hernan Quevedo, Gilliss Dyer, Erhard W. Gaul, Mikael Martinez, Aaron Bernstein, Ted Borger, M. Spinks, M. Donovan, Serguei Y. Kalmykov, Vladimir N. Khudik, Gennady Shvets, Todd Ditmire, Michael C. Downer

Serge Youri Kalmykov

Electron self-injection into a laser-plasma accelerator (LPA) driven by the Texas Petawatt (TPW) laser is reported at plasma densities 1.7 - 6.2 x 10^{17} cm^{-3}. Energy and charge of the electron beam, ranging from 0.5 GeV to 2 GeV and tens to hundreds of pC, respectively, depended strongly on laser beam quality and plasma density. Angular beam divergence was consistently around 0.5 mrad (FWHM), while shot-to-shot pointing fluctuations were limited to ±1.4 mrad rms. Betatron x-rays with tens of keV photon energy are also clearly observed.


Sub-Millimeter-Scale, 100-Mev-Class Quasi-Monoenergetic Laser Plasma Accelerator Based On All-Optical Control Of Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Xavier Davoine, Bradley A. Shadwick Dec 2012

Sub-Millimeter-Scale, 100-Mev-Class Quasi-Monoenergetic Laser Plasma Accelerator Based On All-Optical Control Of Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Xavier Davoine, Bradley A. Shadwick

Serge Youri Kalmykov

It is demonstrated that by negatively chirping the frequency of a 20-fs, 15-TW driving laser pulse with an ultrabroad bandwidth (corresponding to a sub-2-cycle transform-limited duration it is possible to prevent early compression of the pulse into an optical shock, thus reducing expansion of the accelerating plasma bucket (electron density "bubble") and delaying dephasing of self-injected and accelerated electrons. These features help suppress unwanted continuous self-injection (dark current) in the blowout regime, making possible to use the entire dephasing length to generate low-background, quasi-monoenergetic 200-MeV-scale electron beams from sub-mm-length, dense plasmas (n_{e0} = 1.3 x 10^{19} cm^{−3}).


One-Phase Problems For Discontinuous Heat Transfer In Fractal Media, Yang Xiaojun Dec 2012

One-Phase Problems For Discontinuous Heat Transfer In Fractal Media, Yang Xiaojun

Xiao-Jun Yang

We first propose the fractal models for the one-phase problems of discontinuous transient heat transfer.The models are taken in sense of local fractional differential operator and used to describe the (dimensionless)melting of fractal solid semi-infinite materials initially at their melt temperatures.


On The Geometrıc Interpretatıons Of The Kleın-Gordon Equatıon And Solution Of The Equation By Homotopy Perturbation Method, Hasan Bulut, H. M. Başkonuş Dec 2012

On The Geometrıc Interpretatıons Of The Kleın-Gordon Equatıon And Solution Of The Equation By Homotopy Perturbation Method, Hasan Bulut, H. M. Başkonuş

Applications and Applied Mathematics: An International Journal (AAM)

This paper is organized in the following ways: In the first part, we obtained the Klein Gordon Equation (KGE) in the Galilean space. In the second part, we applied Homotopy Perturbation Method (HPM) to this differential equation. In the third part, we gave two examples for the Klein Gordon equation. Finally, We compared the numerical results of this differential equation with their exact results. We also showed that approach used is easy and highly accurate.


Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


Local Fractional Fourier Series With Application To Wave Equation In Fractal Vibrating String, Yang Xiaojun Nov 2012

Local Fractional Fourier Series With Application To Wave Equation In Fractal Vibrating String, Yang Xiaojun

Xiao-Jun Yang

We introduce the wave equation in fractal vibrating string in the framework of the local fractional calculus. Our particular attention is devoted to the technique of the local fractional Fourier series for processing these local fractional differential operators in a way accessible to applied scientists. By applying this technique we derive the local fractional Fourier series solution of the local fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag- Leffler function.


Relativistic Solution Of The N-Body Problem (Ii), Jorge A. Franco Oct 2012

Relativistic Solution Of The N-Body Problem (Ii), Jorge A. Franco

Jorge A Franco

This work is the continuation of the classical approach described in previous paper for constant masses. In here the solution of the movement of a group of N gravitationally attracting bodies around its center of mass CM, given their initial positions and velocities, is developed for variable masses under the Theory of Vectorial Relativity. The strategy of realizing special physical characteristics of forces on the the CM and properties of the reduced mass in the solution of the two-body problem, allowed extending the Newton’s Universal Gravitation Law for applying to two or more attracting bodies, and also allowed operating on …


How To Create A Two-Component Spinor, Charles G. Torre Oct 2012

How To Create A Two-Component Spinor, Charles G. Torre

How to... in 10 minutes or less

Let (M, g) be a spacetime, i.e., a 4-dimensional manifold M and Lorentz signature metric g. The key ingredients needed for constructing spinor fields on the spacetime are: a complex vector bundle E -> M ; an orthonormal frame on TM ; and a solder form relating sections of E to sections of TM (and tensor products thereof). We show how to create a two-component spinor field on the Schwarzschild spacetime using the DifferentialGeometry package in Maple. PDF and Maple worksheets can be downloaded from the links below.


Molecular Dynamics Studies Of Water Flow In Carbon Nanotubes, Alexander D. Marshall Aug 2012

Molecular Dynamics Studies Of Water Flow In Carbon Nanotubes, Alexander D. Marshall

Electronic Thesis and Dissertation Repository

We present classical molecular dynamics (MD) simulations providing insight into the behaviour of water. We focus on confined water, the properties of which are often significantly different from the properties of bulk water.

First, we performed several simulations investigating the handling of long-range interactions in GROMACS [1], a MD simulation package. Selection of simulation protocols such as handling of long-range interactions is often overlooked, sometimes to the significant detriment of the final result [2, 3, 4]. Ensuring that the chosen simulation protocols are appropriate is a critical step in computer simulation.

Second, we performed MD simulations where water flowed between …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …


Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er. Jul 2012

Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er.

Radhey Shyam Meena

Switchyard Provides the facilities for switching ,protection & Control of electric power. To handle high Voltage power with proper Safety measures. To isolate the noises coming from the grid with true 50Hz power SWITCH YARD IS IMPORTANT PART IN THERMAL PLANT. IN KALISINDH THERMAL 400KV AND 220KV SWITCH YARD LOCATED.


Phase Field Crystal Approach To The Solidification Of Ferromagnetic Materials, Niloufar Faghihi Jun 2012

Phase Field Crystal Approach To The Solidification Of Ferromagnetic Materials, Niloufar Faghihi

Electronic Thesis and Dissertation Repository

The dependence of the magnetic hardness on the microstructure of magnetic solids is investigated, using a field theoretical approach, called the Magnetic Phase Field Crystal model. We constructed the free energy by extending the Phase Field Crystal (PFC) formalism and including terms to incorporate the ferromagnetic phase transition and the anisotropic magneto-elastic effects, i.e., the magnetostriction effect. Using this model we performed both analytical calculations and numerical simulations to study the coupling between the magnetic and elastic properties in ferromagnetic solids. By analytically minimizing the free energy, we calculated the equilibrium phases of the system to be liquid, non-magnetic …


Computationally Efficient Methods For Modelling Laser Wakefield Acceleration In The Blowout Regime, Benjamin M. Cowan, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Kyle Bunkers, Agustin F. Lifschitz, Erik Lefebvre, David L. Bruhwiler, Bradley A. Shadwick, Donald P. Umstadter Jun 2012

Computationally Efficient Methods For Modelling Laser Wakefield Acceleration In The Blowout Regime, Benjamin M. Cowan, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Kyle Bunkers, Agustin F. Lifschitz, Erik Lefebvre, David L. Bruhwiler, Bradley A. Shadwick, Donald P. Umstadter

Donald P. Umstadter

Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code VORPAL (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while …


Computationally Efficient Methods For Modelling Laser Wakefield Acceleration In The Blowout Regime, Benjamin M. Cowan, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Kyle Bunkers, Agustin F. Lifschitz, Erik Lefebvre, David L. Bruhwiler, Bradley A. Shadwick, Donald P. Umstadter Jun 2012

Computationally Efficient Methods For Modelling Laser Wakefield Acceleration In The Blowout Regime, Benjamin M. Cowan, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Kyle Bunkers, Agustin F. Lifschitz, Erik Lefebvre, David L. Bruhwiler, Bradley A. Shadwick, Donald P. Umstadter

Serge Youri Kalmykov

Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code VORPAL (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while …


Variational Iteration Method For Q-Difference Equations Of Second Order, Guo-Cheng Wu Jun 2012

Variational Iteration Method For Q-Difference Equations Of Second Order, Guo-Cheng Wu

G.C. Wu

Recently, Liu extended He's variational iteration method to strongly nonlinear q-difference equations. In this study, the iteration formula and the Lagrange multiplier are given in a more accurate way. The q-oscillation equation of second order is approximately solved to show the new Lagrange multiplier's validness.


Two Numerical Algorithms For Solving A Partial Integro-Differential Equation With A Weakly Singular Kernel, Jeong-Mi Yoon, Shishen Xie, Volodymyr Hrynkiv Jun 2012

Two Numerical Algorithms For Solving A Partial Integro-Differential Equation With A Weakly Singular Kernel, Jeong-Mi Yoon, Shishen Xie, Volodymyr Hrynkiv

Applications and Applied Mathematics: An International Journal (AAM)

Two numerical algorithms based on variational iteration and decomposition methods are developed to solve a linear partial integro-differential equation with a weakly singular kernel arising from viscoelasticity. In addition, analytic solution is re-derived by using the variational iteration method and decomposition method.


Mhd Mixed Convective Flow Of Viscoelastic And Viscous Fluids In A Vertical Porous Channel, R. Sivaraj, B. R. Kumar, J. Prakash Jun 2012

Mhd Mixed Convective Flow Of Viscoelastic And Viscous Fluids In A Vertical Porous Channel, R. Sivaraj, B. R. Kumar, J. Prakash

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we analyze the problem of steady, mixed convective, laminar flow of two incompressible, electrically conducting and heat absorbing immiscible fluids in a vertical porous channel filled with viscoelastic fluid in one region and viscous fluid in the other region. A uniform magnetic field is applied in the transverse direction, the fluids rise in the channel driven by thermal buoyancy forces associated with thermal radiation. The equations are modeled using the fully developed flow conditions. An exact solution is obtained for the velocity, temperature, skin friction and Nusselt number distributions. The physical interpretation to these expressions is examined …


New Explicit Solutions For Homogeneous Kdv Equations Of Third Order By Trigonometric And Hyperbolic Function Methods, Marwan Alquran, Roba Al-Omary, Qutaibeh Katatbeh Jun 2012

New Explicit Solutions For Homogeneous Kdv Equations Of Third Order By Trigonometric And Hyperbolic Function Methods, Marwan Alquran, Roba Al-Omary, Qutaibeh Katatbeh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we study two-component evolutionary systems of the homogeneous KdV equation of the third order types (I) and (II). Trigonometric and hyperbolic function methods such as the sine-cosine method, the rational sine-cosine method, the rational sinh-cosh method, sech-csch method and rational tanh-coth method are used for analytical treatment of these systems. These methods, have the advantage of reducing the nonlinear problem to a system of algebraic equations that can be solved by computerized packages.


Boundary Stabilization Of Torsional Vibrations Of A Solar Panel, Prasanta K. Nandi, Ganesh C. Gorain, Samarjit Kar Jun 2012

Boundary Stabilization Of Torsional Vibrations Of A Solar Panel, Prasanta K. Nandi, Ganesh C. Gorain, Samarjit Kar

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we study a boundary stabilization of the torsional vibrations of a solar panel. The panel is held by a rigid hub at one end and is totally free at the other. The dynamics of the overall system leads to hybrid system of equations. It is set to a certain initial vibrations with a control torque as a stabilizer at the hub end only. Taking a non-linear damping as boundary stabilizer, a uniform exponential energy decay rate is obtained directly. Thus an explicit form of uniform stabilization of the system is achieved by means of the exponential energy …


Modelling Two-Dimensional Photopolymer Patterns Produced With Multiple-Beam Holography, Dana Mackey, Tsvetanka Babeva, Izabela Naydenova, Vincent Toal May 2012

Modelling Two-Dimensional Photopolymer Patterns Produced With Multiple-Beam Holography, Dana Mackey, Tsvetanka Babeva, Izabela Naydenova, Vincent Toal

Conference papers

Periodic structures referred to as photonic crystals attract considerable interest due to their potential applications in areas such as nanotechnology, photonics, plasmonics, etc. Among various techniques used for their fabrication, multiple-beam holography is a promising method enabling defect-free structures to be produced in a single step over large areas.

In this paper we use a mathematical model describing photopolymerisation to simulate two-dimensional structures produced by the interference pattern of three noncoplanar beams. The holographic recording of different lattices is studied by variation of certain parameters such as beam wave vectors, time and intensity of illumination.


Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter Apr 2012

Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter

Donald P. Umstadter

In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30 - 80 TW, 30 fs laser pulses, operates in the blowout regime, and produces high-quality, quasi-monoenergetic electron beams in the range 100 - 800 MeV. These beams have angular divergence of 1 - 4 mrad, and 5 - 25 percent energy spread, with a resulting brightness 10^{11} electrons mm^{-2} MeV^{-1} mrad^{-2}. The beam parameters can be tuned by varying the laser and plasma conditions. The use of a high-quality laser pulse and appropriate target conditions enables optimization of …


Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter Apr 2012

Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter

Serge Youri Kalmykov

In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30 - 80 TW, 30 fs laser pulses, operates in the blowout regime, and produces high-quality, quasi-monoenergetic electron beams in the range 100 - 800 MeV. These beams have angular divergence of 1 - 4 mrad, and 5 - 25 percent energy spread, with a resulting brightness 10^{11} electrons mm^{-2} MeV^{-1} mrad^{-2}. The beam parameters can be tuned by varying the laser and plasma conditions. The use of a high-quality laser pulse and appropriate target conditions enables optimization of …


Stiefel And Grassmann Manifolds In Quantum Chemistry, Eduardo Chiumiento, Michael Melgaard Apr 2012

Stiefel And Grassmann Manifolds In Quantum Chemistry, Eduardo Chiumiento, Michael Melgaard

Articles

We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slatertype variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove thatthey are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds. These geometric properties underpin state-of-the-art results on existence of solutions to Hartree-Fock type equations.


The Discrete Yang-Fourier Transforms In Fractal Space, Yang Xiao-Jun Apr 2012

The Discrete Yang-Fourier Transforms In Fractal Space, Yang Xiao-Jun

Xiao-Jun Yang

The Yang-Fourier transform (YFT) in fractal space is a generation of Fourier transform based on the local fractional calculus. The discrete Yang-Fourier transform (DYFT) is a specific kind of the approximation of discrete transform, used in Yang-Fourier transform in fractal space. This paper points out new standard forms of discrete Yang-Fourier transforms (DYFT) of fractal signals, and both properties and theorems are investigated in detail.


Expression Of Generalized Newton Iteration Method Via Generalized Local Fractional Taylor Series, Yang Xiao-Jun Apr 2012

Expression Of Generalized Newton Iteration Method Via Generalized Local Fractional Taylor Series, Yang Xiao-Jun

Xiao-Jun Yang

Local fractional derivative and integrals are revealed as one of useful tools to deal with everywhere continuous but nowhere differentiable functions in fractal areas ranging from fundamental science to engineering. In this paper, a generalized Newton iteration method derived from the generalized local fractional Taylor series with the local fractional derivatives is reviewed. Operators on real line numbers on a fractal space are induced from Cantor set to fractional set. Existence for a generalized fixed point on generalized metric spaces may take place.


Laser Plasma Acceleration With A Negatively Chirped Pulse: All-Optical Control Over Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Erik Lefebvre, Bradley A. Shadwick Mar 2012

Laser Plasma Acceleration With A Negatively Chirped Pulse: All-Optical Control Over Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Erik Lefebvre, Bradley A. Shadwick

Serge Youri Kalmykov

Recent experiments with 100 terawatt-class, sub-50 femtosecond laser pulses show that electrons self-injected into a laser-driven electron density bubble can be accelerated above 0.5 gigaelectronvolt energy in a sub-centimetre length rarefied plasma. To reach this energy range, electrons must ultimately outrun the bubble and exit the accelerating phase; this, however, does not ensure high beam quality. Wake excitation increases the laser pulse bandwidth by red-shifting its head, keeping the tail unshifted. Anomalous group velocity dispersion of radiation in plasma slows down the red-shifted head, compressing the pulse into a few-cycle-long piston of relativistic intensity. Pulse transformation into a piston causes …


The Zero-Mass Renormalization Group Differential Equations And Limit Cycles In Non-Smooth Initial Value Problems, Yang Xiaojun Mar 2012

The Zero-Mass Renormalization Group Differential Equations And Limit Cycles In Non-Smooth Initial Value Problems, Yang Xiaojun

Xiao-Jun Yang

In the present paper, using the equation transform in fractal space, we point out the zero-mass renormalization group equations. Under limit cycles in the non-smooth initial value, we devote to the analytical technique of the local fractional Fourier series for treating zero-mass renormalization group equations, and investigate local fractional Fourier series solutions.


Preconditioning Visco-Resistive Mhd For Tokamak Plasmas, Daniel R. Reynolds, Ravi Samtaney, Hilari C. Tiedeman Mar 2012

Preconditioning Visco-Resistive Mhd For Tokamak Plasmas, Daniel R. Reynolds, Ravi Samtaney, Hilari C. Tiedeman

Mathematics Research

No abstract provided.


A Novel Approach To Processing Fractal Dynamical Systems Using The Yang-Fourier Transforms, Yang Xiaojun Mar 2012

A Novel Approach To Processing Fractal Dynamical Systems Using The Yang-Fourier Transforms, Yang Xiaojun

Xiao-Jun Yang

In the present paper, local fractional continuous non-differentiable functions in fractal space are investigated, and the control method for processing dynamic systems in fractal space are proposed using the Yang-Fourier transform based on the local fractional calculus. Two illustrative paradigms for control problems in fractal space are given to elaborate the accuracy and reliable results.


Heterogeneous Multiscale Modeling Of Advection-Diffusion Problems, David J. Gardner, Daniel R. Reynolds Feb 2012

Heterogeneous Multiscale Modeling Of Advection-Diffusion Problems, David J. Gardner, Daniel R. Reynolds

Mathematics Research

No abstract provided.