Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2011

PDF

Faculty Publications

Quantum

Articles 1 - 2 of 2

Full-Text Articles in Physics

Quantum Criticality And Incipient Phase Separation In The Thermodynamic Properties Of The Hubbard Model, D. Galanakis, Ehsan Khatami, K. Mikelsons, A. Macridin, J. Moreno, D. Browne, M. Jarrell Mar 2011

Quantum Criticality And Incipient Phase Separation In The Thermodynamic Properties Of The Hubbard Model, D. Galanakis, Ehsan Khatami, K. Mikelsons, A. Macridin, J. Moreno, D. Browne, M. Jarrell

Faculty Publications

Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle quantities, such as the spectral function, the quasi-particle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudo-gap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite …


Proximity Of The Superconducting Dome And The Quantum Critical Point In The Two-Dimensional Hubbard Model, S. Yang, H. Fotso, S.-Q. Su, D. Galanakis, Ehsan Khatami, J.-H. She, J. Moreno, J. Zaanen, M. Jarrell Jan 2011

Proximity Of The Superconducting Dome And The Quantum Critical Point In The Two-Dimensional Hubbard Model, S. Yang, H. Fotso, S.-Q. Su, D. Galanakis, Ehsan Khatami, J.-H. She, J. Moreno, J. Zaanen, M. Jarrell

Faculty Publications

We use the dynamical cluster approximation to understand the proximity of the superconducting dome to the quantum critical point in the two-dimensional Hubbard model. In a BCS formalism, Tc may be enhanced through an increase in the d-wave pairing interaction (Vd) or the bare pairing susceptibility (χ0d). At optimal doping, where Vd is revealed to be featureless, we find a power-law behavior of χ0d(ω=0), replacing the BCS log, and strongly enhanced Tc. We suggest experiments to verify our predictions.