Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

A Comparison Of New Methods For Generating Energy-Minimizing Configurations Of Patchy Particles, Eric Jankowski, Sharon C. Glotzer Sep 2009

A Comparison Of New Methods For Generating Energy-Minimizing Configurations Of Patchy Particles, Eric Jankowski, Sharon C. Glotzer

Eric Jankowski

Increasingly complex particles are pushing the limits of traditional simulation techniques used to study self-assembly. In this work, we test the use of a learning-augmented Monte Carlo method for predicting low energy configurations of patchy particles shaped like “Tetris®” pieces. We extend this method to compare it against Monte Carlo simulations with cluster moves and introduce a new algorithm—bottom-up building block assembly—for quickly generating ordered configurations of particles with a hierarchy of interaction energies.


Molecular Beam Epitaxy Of High Mobility In0.75Ga0.25As For Electron Spin Transport Applications, Paul J. Simmonds, S. N. Holmes, H. E. Beere, I. Farrer, F. Sfigakis, D. A. Ritchie, M. Pepper Jul 2009

Molecular Beam Epitaxy Of High Mobility In0.75Ga0.25As For Electron Spin Transport Applications, Paul J. Simmonds, S. N. Holmes, H. E. Beere, I. Farrer, F. Sfigakis, D. A. Ritchie, M. Pepper

Paul J. Simmonds

The authors describe the molecular beam epitaxy of relaxed, nominally undoped In0.75Ga0.25As–In0.75Al0.25As quantum well structures grown on InP substrates. The maximum two-dimensional electron density is 2 × 1011cm−2, with a peak mobility of 2.2 × 105cm2 V−1s−1 at 1.5K. In high magnetic field, the electron g-factor was shown to have a magnitude of 9.1 ± 0.1 at Landau-level filling factor of 4. The Rashba coefficient, determined from the analysis of the magnetoresistance at high Landau-level filling factor (>12), …