Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Merged Ionization/Dissociation Fronts In Planetary Nebulae, William J. Henney, R. J. R. Williams, Gary J. Ferland, Gargi Shaw, C. R. O'Dell Dec 2007

Merged Ionization/Dissociation Fronts In Planetary Nebulae, William J. Henney, R. J. R. Williams, Gary J. Ferland, Gargi Shaw, C. R. O'Dell

Physics and Astronomy Faculty Publications

The hydrogen ionization and dissociation front around an ultraviolet radiation source should merge when the ratio of ionizing photon flux to gas density is sufficiently low and the spectrum is sufficiently hard. This regime is particularly relevant to the molecular knots that are commonly found in evolved planetary nebulae, such as the Helix Nebula, where traditional models of photodissociation regions have proved unable to explain the high observed luminosity in H2 lines. In this paper we present results for the structure and steady state dynamics of such advection-dominated merged fronts, calculated using the Cloudy plasma/molecular physics code. We find …


Numerical Hydrodynamics Of Relativistic Extragalactic Jets, Eunwoo Choi May 2007

Numerical Hydrodynamics Of Relativistic Extragalactic Jets, Eunwoo Choi

Physics and Astronomy Dissertations

This dissertation describes a multidimensional relativistic hydrodynamic code which solves the special relativistic hydrodynamic equations as a hyperbolic system of conservation laws based on the total variation diminishing (TVD) scheme. Several standard tests and test simulations are presented to demonstrate the accuracy, robustness and flexibility of the code. Using this code we have studied three-dimensional hydrodynamic interactions of relativistic extragalactic jets with two-phase ambient media. The deflection angle of the jet is influenced more by the density contrast of the cloud than by the beam Mach number of the jet, and a relativistic jet with low relativistic beam Mach number …


A Dyad Theory Of Hydrodynamics And Electrodynamics, Preston Jones Jan 2007

A Dyad Theory Of Hydrodynamics And Electrodynamics, Preston Jones

Publications

The dyadic calculus is developed in a form suitable for the description of physical relations in curved space. The 4-space equations of hydrodynamics and electrodynamics are constructed using this dyadic calculus. As a demonstration of the relationship between gravity and electrodynamics a time varying metric is shown to generate electromagnetic radiation.


Algorithm Refinement For Fluctuating Hydrodynamics, Alejandro Garcia, S. Williams, J. B. Bell Jan 2007

Algorithm Refinement For Fluctuating Hydrodynamics, Alejandro Garcia, S. Williams, J. B. Bell

Faculty Publications

This paper introduces an adaptive mesh and algorithm refinement method for fluctuating hydrodynamics. This particle-continuum hybrid simulates the dynamics of a compressible fluid with thermal fluctuations. The particle algorithm is direct simulation Monte Carlo (DSMC), a molecular-level scheme based on the Boltzmann equation. The continuum algorithm is based on the Landau–Lifshitz Navier–Stokes (LLNS) equations, which incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. It uses a recently developed solver for the LLNS equations based on third-order Runge–Kutta. We present numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate dynamic adaptive refinement by the …


Microscopic-Macroscopic Simulations Of Rigid-Rod Polymer Hydrodynamics: Heterogeneity And Rheochaos, M. Gregory Forest, Ruhai Zhou, Qi Wang Jan 2007

Microscopic-Macroscopic Simulations Of Rigid-Rod Polymer Hydrodynamics: Heterogeneity And Rheochaos, M. Gregory Forest, Ruhai Zhou, Qi Wang

Mathematics & Statistics Faculty Publications

Rheochaos is a remarkable phenomenon of nematic (rigid-rod) polymers in steady shear, with sustained chaotic fluctuations of the orientational distribution of the rod ensemble. For monodomain dynamics, imposing spatial homogeneity and linear shear, rheochaos is a hallmark prediction of the Doi-Hess theory [M. Doi, J. Polym. Sci. Polym. Phys. Ed., 19 (1981), pp. 229-243; M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, London, New York, 1986; S. Hess, Z. Naturforsch., 31 (1976), pp. 1034-1037. The model behavior is robust, captured by second-moment tensor approximations G. Rienäcker, M. Kröger, and S. Hess, Phys. Rev. …


Algorithm Refinement For Fluctuating Hydrodynamics, Alejandro Garcia, Sarah Williams, John B. Bell Jan 2007

Algorithm Refinement For Fluctuating Hydrodynamics, Alejandro Garcia, Sarah Williams, John B. Bell

Alejandro Garcia

This paper introduces an adaptive mesh and algorithm refinement method for fluctuating hydrodynamics. This particle-continuum hybrid simulates the dynamics of a compressible fluid with thermal fluctuations. The particle algorithm is direct simulation Monte Carlo (DSMC), a molecular-level scheme based on the Boltzmann equation. The continuum algorithm is based on the Landau–Lifshitz Navier–Stokes (LLNS) equations, which incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. It uses a recently developed solver for the LLNS equations based on third-order Runge–Kutta. We present numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate dynamic adaptive refinement by the …