Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Size-Driven Domain Reorientation In Hydrothermally Derived Lead Titanate Nanoparticles, Zhiyuan Ye, Elliot B. Slamovich, Alexander H. King Mar 2005

Size-Driven Domain Reorientation In Hydrothermally Derived Lead Titanate Nanoparticles, Zhiyuan Ye, Elliot B. Slamovich, Alexander H. King

Alexander H. King

High-resolution transmission electron microscopy studies of hydrothermally derived platelike lead titanate nanoparticles reveal that below a critical size of approximately 70 nm, the single ferroelectric domain polarization axis reorients from perpendicular to parallel to the plate. We suggest that during particle growth, ions in the hydrothermal processing medium compensate for the ferroelectric depolarization energy. When the processing medium is removed by washing and drying, single domain nanoparticles minimize their depolarization energy by c-axis flipping.


Nonlinear Dynamics Of Piezoelectric High Displacement Actuators In Cantilever Mode, Timothy Usher, Alec Sim Jan 2005

Nonlinear Dynamics Of Piezoelectric High Displacement Actuators In Cantilever Mode, Timothy Usher, Alec Sim

Physics Faculty Publications

Experimental results of the nonlinear dynamic response of a piezoelectric high displacement actuator known as thin-layer composite unimorph ferroelectric driver and sensor were compared to a theoretical model, which utilizes the multiple scales method to connect the effective spring constant to higher-order stiffness constants c4 of the piezoelectric layer. This type of actuator has prestress gradients resulting from the manufacturing process that have been reported to play an important role in enhanced actuation. A value of c4=−4.7x1020 N/m2 was obtained for the higher-order lead zirconate titanate (PZT) stiffness coefficient, which is higher than other published results …


Mechanism Of Structural Transformation In Bismuth Titanate, Sudhanshu Mallick, Keith J. Bowman, Alexander H. King Jan 2005

Mechanism Of Structural Transformation In Bismuth Titanate, Sudhanshu Mallick, Keith J. Bowman, Alexander H. King

Alexander H. King

Sodium-doped bismuth titanate undergoes a transformation from Bi4Ti3O12 to Na0.5Bi4.5Ti4O15 on heating in air at temperatures exceeding 800 °C. This transformation proceeds through the intermediate Na0.5Bi8.5Ti7O27 structure which is an intergrowth phase of the two. High-resolution transmission electron microscopy was used to study this transformation. From the Moiré pattern that was obtained, the crystallographic orientation of the transformation front has been determined and a mechanism is proposed for this structural transformation.


Dislocation-Indenter Interaction In Nanoindentation, M. Ravi Shankar, Alexander H. King, Srinivasan Chandrasekar Jan 2005

Dislocation-Indenter Interaction In Nanoindentation, M. Ravi Shankar, Alexander H. King, Srinivasan Chandrasekar

Alexander H. King

A formulation of dislocation-indenter interaction in two-dimensional, isotropic elasticity is presented. A significant dislocation-indenter interaction is predicted when dislocations are nucleated very close to the indenter. This interaction is expected to have an important influence on dislocation motion and multiplication. Upon nucleation close to the indenter, the dislocations are shown to modify the load, load distribution, and moment acting on the indenter. This effect is seen to vary with the indentation contact length. Further away from the indenter, the indenter-dislocation interaction is shown to be negligible.


Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry Jan 2005

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

There is an active international interest in lead-bismuth eutectic and similar liquid lead systems because of the relevance to the transmutation of nuclear waste, fast reactors, and spallation neutron sources.

Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. For lead bismuth eutectic (LBE) systems, there is an additional challenge because the corrosive behaviors of materials in LBE are not well understood. Most of the available information on LBE systems has come from the Russians, who have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The Russians found …