Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Linear Optics Simulations Of The Quantum Baker’S Map, John C. Howell, John A. Yeazell Dec 1999

Linear Optics Simulations Of The Quantum Baker’S Map, John C. Howell, John A. Yeazell

Mathematics, Physics, and Computer Science Faculty Articles and Research

The unitary evolution of linear optics can be used to model quantum computational networks. In this paper, a quantum simulation of a classically chaotic map (the baker’s map) is developed using linear optics. Two different models are presented. The first model employs only 50-50 beam splitters and phase shifters to simulate universal 2-qubit gates of a quantum computer. The second model uses the discrete Fourier transform generated by symmetric N×N fiber couplers. If single photons are used as inputs for these linear optics models, the result is a physical realization of the quantum baker’s map.


Comment On "Ideal Capacitor Circuits And Energy Conservation" By K. Mita And M. Boufaida [Am. J. Phys. 67 (8), 737-739 (1999)], Asim Gangopadhyaya, Jeffrey Mallow Oct 1999

Comment On "Ideal Capacitor Circuits And Energy Conservation" By K. Mita And M. Boufaida [Am. J. Phys. 67 (8), 737-739 (1999)], Asim Gangopadhyaya, Jeffrey Mallow

Physics: Faculty Publications and Other Works

No abstract provided.


A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Jul 1999

A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

A quantum field theory warm inflation model is presented that solves the horizon and flatness problems. The model obtains, from the elementary dynamics of particle physics, cosmological scale factor trajectories that begin in a radiation dominated regime, enter an inflationary regime, and then smoothly exit back into a radiation dominated regime, with non-negligible radiation throughout the evolution.


Virtual Compton Scattering Processes In Quantum Chromodynamics, Igor V. Musatov Apr 1999

Virtual Compton Scattering Processes In Quantum Chromodynamics, Igor V. Musatov

Physics Theses & Dissertations

Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual Parton distributions for the case when long-distance information is accumulated in nonforward matrix elements [special characters omitted] of quark and gluon light-cone operators. We consider different aspects of the investigation of the virtual Compton amplitude in the QCD on two examples: the spin dependent observables in the forward virtual Compton process (measured in the experiments on deep inelastic scattering) and the γγ* transition form factor. Then we discuss in detail evolution equations for non-forward parton distributions [special characters omitted] The …


The Non-Local Universe: The New Physics And Matters Of The Mind, Robert Nadeau, Menas Kafatos Jan 1999

The Non-Local Universe: The New Physics And Matters Of The Mind, Robert Nadeau, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Books and Book Chapters

Classical physics states that physical reality is local, or that a measurement at one point in space cannot cannot influence what occurs at another beyond a fairly short distance. Until recently this seemed like an immutable truth in nature. However, in 1997 experiments were conducted in which light particles (photons) originated under certain conditions and traveled in opposite directions to detectors located about seven miles apart. The amazing results indicated that the photons "interacted" or "communicated" with one another instantly or "in no time," leading to the revelation that physical reality is non-local--a discovery that Robert Nadeau and Menas Kafatos …


Factorization And High-Energy Effective Action, Ian Balitsky Jan 1999

Factorization And High-Energy Effective Action, Ian Balitsky

Physics Faculty Publications

I demonstrate that the amplitude for high-energy scattering can be factorized as a convolution of the contributions due to fast and slow fields. The fast and slow fields interact by means of Wilson-line operators—infinite gauge factors ordered along the straight line. The resulting factorization formula gives a starting point for a new approach to the effective action for high-energy scattering in QCD.