Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1996

Engineering

William & Mary

Articles 1 - 3 of 3

Full-Text Articles in Physics

The Projector Basis Method For Electronic Band Structure Calculations, Christopher Haas Jan 1996

The Projector Basis Method For Electronic Band Structure Calculations, Christopher Haas

Dissertations, Theses, and Masters Projects

Over the last several decades, two methods have emerged as the standard tools for the calculation of electronic band structures. These methods, the Car-Parinello plane wave method and the linear augmented plane wave method (LAPW), each have strengths and weaknesses in different regimes of physical problems. The Car-Parinello algorithm is ideal for calculations with soft pseudopotentials and large numbers of atoms. The LAPW method, on the other hand, easily handles all-electron and hard-core pseudopotential calculations with a small number of atoms. The projector basis method, presented here, is a hybrid mixed basis method which allows the calculation of moderately large …


Surface Reflection Hyperthermal Neutral Stream Source, Christopher A. Nichols Jan 1996

Surface Reflection Hyperthermal Neutral Stream Source, Christopher A. Nichols

Dissertations, Theses, and Masters Projects

A novel source of hyperthermal (1-30 eV) reactive neutrals based on the surface-reflection-neutralization technique is described. This source is potentially capable of minimizing the charge-induced damage associated with plasma based semiconductor processing steps. The goal of this thesis is to investigate the issues involved in scale-up of this technology for processing of 8{dollar}\sp{lcub}\prime\prime{rcub}{dollar} diameter wafers used today in the semiconductor industry. This includes modeling the plasma ion source and trajectory simulations of the reflected neutral flux. A prototype source was constructed for experimental verification of the plasma model.;An inductively coupled plasma (ICP) source is used to provide a source of …


Synthesis And Characterization Of Boron-Containing Polymeric Materials For Neutron Shielding Applications, Michael B. Glasgow Jan 1996

Synthesis And Characterization Of Boron-Containing Polymeric Materials For Neutron Shielding Applications, Michael B. Glasgow

Dissertations, Theses, and Masters Projects

The development of boron-containing polymeric materials for neutron shielding applications was undertaken. Three types of materials were characterized for physical and thermal properties: boron powder-filled epoxy composites, carborane polyamides having boron chemically bonded into the polymer, and boron-loaded polyimide thin films. Addition of amorphous submicron boron powder did not affect significantly the thermal performance of the epoxy. The 17% boron loading produced a 26% increase in compressive failure strength and a 68% increase in the compressive modulus. 0.125 inch thick specimens containing 17% boron absorbed 92% of incident neutrons from a 5-Curie Pu/Be source compared with {dollar}<{dollar}1% for the neat epoxy. Dispersion of the boron in the epoxy was improved with the addition of larger size crystalline boron powders. Carborane polyamides containing up to 35% boron were thermally stable up to 400{dollar}\sp\circ{dollar}C in air. The polymers had hydrogen/boron ratios from 2.0 to 3.8 and were soluble in several organic solvents. Polymer solutions were processed into clear, colored thin films. Boron-filled polyamic acid solutions of a PMDA-ODA polyimide containing up to 10% boron were processed into thin films. Neutron absorption of the opaque films measured in a 5-Curie Pu/Be neutron source was linear with boron concentration and film thickness. The fraction of neutrons absorbed varied linearly with boron concentration and film thickness. The applicability of boron-containing materials to the aerospace, nuclear power and accelerator industries was investigated.