Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Nanometer Scale Patterning And Oxidation Of Silicon Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, G. C. Abeln, T. -C. Shen, C. Wang, J. R. Tucker Aug 1994

Nanometer Scale Patterning And Oxidation Of Silicon Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, G. C. Abeln, T. -C. Shen, C. Wang, J. R. Tucker

T. -C. Shen

Nanoscale patterning of the Si(100)‐2×1 monohydride surface has been achieved by using an ultrahigh vacuum (UHV) scanning tunneling microscope(STM) to selectively desorb the hydrogen passivation. Hydrogen passivation on silicon represents one of the simplest possible resist systems for nanolithography experiments. After preparing high quality H‐passivated surfaces in the UHV chamber, patterning is achieved by operating the STM in field emission. The field emitted electrons stimulate the desorption of molecular hydrogen, restoring clean Si(100)‐2×1 in the patterned area. This depassivation mechanism seems to be related to the electron kinetic energy for patterning at higher voltages and the electron current for low …


Nanoscale Patterning And Oxidation Of H-Passivated Si(100)-2x1 Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, T. -C. Shen, J. S. Hubaceck, J. R. Tucker, G. C. Abeln Jan 1994

Nanoscale Patterning And Oxidation Of H-Passivated Si(100)-2x1 Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, T. -C. Shen, J. S. Hubaceck, J. R. Tucker, G. C. Abeln

T. -C. Shen

Nanoscale patterning of the hydrogen terminated Si(100)‐2×1 surface has been achieved with an ultrahigh vacuum scanning tunneling microscope.Patterning occurs when electrons field emitted from the probe locally desorb hydrogen, converting the surface into clean silicon. Linewidths of 1 nm on a 3 nm pitch are achieved by this technique. Local chemistry is also demonstrated by the selective oxidation of the patterned areas. During oxidation, the linewidth is preserved and the surrounding H‐passivated regions remain unaffected, indicating the potential use of this technique in multistep lithography processes.