Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Gravity And Electromagnetism In Noncommutative Geometry, Giovanni Landi, Nguyen Ai Viet, Kameshwar C. Wali Jan 1994

Gravity And Electromagnetism In Noncommutative Geometry, Giovanni Landi, Nguyen Ai Viet, Kameshwar C. Wali

Physics - All Scholarship

We present a unified description of gravity and electromagnetism in the framework of a Z 2 non-commutative differential calculus. It can be considered as a “discrete version” of Kaluza-Klein theory, where the fifth continuous dimension is replaced by two discrete points. We derive an action which coincides with the dimensionally reduced one of the ordinary Kaluza-Klein theory.


Prediction Of The Stochastic Behavior Of Nonlinear Systems By Deterministic Models As A Classical Time-Passage Probabilistic Problem, L. M. Ivanov, A. D. Kirwan Jr., O. V. Melnichenko Jan 1994

Prediction Of The Stochastic Behavior Of Nonlinear Systems By Deterministic Models As A Classical Time-Passage Probabilistic Problem, L. M. Ivanov, A. D. Kirwan Jr., O. V. Melnichenko

CCPO Publications

Assuming that the behaviour of a nonlinear stochastic system can be described by a Markovian diffusion approximation and that the evolution equations can be reduced to a system of ordinary differential equations, a method for the calculation of prediction time is developed. In this approach, the prediction time depends upon the accuracy of prediction, the intensity of turbulence, the accuracy of the initial conditions, the physics contained in the mathematical model, the measurement errors, and the number of prediction variables. A numerical application to zonal channel flow illustrates the theory. Some possible generalizations of the theory are also discussed.


Advection Of A Passive Scalar By A Vortex Couple In The Small-Diffusion Limit, Joseph F. Lingevitch, Andrew J. Bernoff Jan 1994

Advection Of A Passive Scalar By A Vortex Couple In The Small-Diffusion Limit, Joseph F. Lingevitch, Andrew J. Bernoff

All HMC Faculty Publications and Research

We study the advection of a passive scalar by a vortex couple in the small-diffusion (i.e. large Péclet number, Pe) limit. The presence of weak diffusion enhances mixing within the couple and allows the gradual escape of the scalar from the couple into the surrounding flow. An averaging technique is applied to obtain an averaged diffusion equation for the concentration inside the dipole which agrees with earlier results of Rhines & Young for large times. At the outer edge of the dipole, a diffusive boundary layer of width O(Pe−½) forms; asymptotic matching to the interior …