Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

1994

Astrophysics and Astronomy

Dilute

Articles 1 - 2 of 2

Full-Text Articles in Physics

Microscopic Simulation Of Dilute Gases With Adjustable Transport Coefficients, Alejandro Garcia, F. Baras, M. Malek Mansour Jan 1994

Microscopic Simulation Of Dilute Gases With Adjustable Transport Coefficients, Alejandro Garcia, F. Baras, M. Malek Mansour

Faculty Publications

The Bird algorithm is a computationally efficient method for simulating dilute gas flows. However, due to the relatively large transport coefficients at low densities, high Rayleigh or Reynolds numbers are difficult to achieve by this technique. We present a modified version of the Bird algorithm in which the relaxation processes are enhanced and the transport coefficients reduced, while preserving the correct equilibrium and nonequilibrium fluid properties. The present algorithm is found to be two to three orders of magnitude faster than molecular dynamics for simulating complex hydrodynamical flows.


Microscopic Simulation Of Dilute Gases With Adjustable Transport Coefficients, Alejandro Garcia, F. Baras, M. Malek Mansour Dec 1993

Microscopic Simulation Of Dilute Gases With Adjustable Transport Coefficients, Alejandro Garcia, F. Baras, M. Malek Mansour

Alejandro Garcia

The Bird algorithm is a computationally efficient method for simulating dilute gas flows. However, due to the relatively large transport coefficients at low densities, high Rayleigh or Reynolds numbers are difficult to achieve by this technique. We present a modified version of the Bird algorithm in which the relaxation processes are enhanced and the transport coefficients reduced, while preserving the correct equilibrium and nonequilibrium fluid properties. The present algorithm is found to be two to three orders of magnitude faster than molecular dynamics for simulating complex hydrodynamical flows.