Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Sensitivity Improvement Of A 1-Μm Ladar System Incorporating An Active Optical Fiber Preamplifier, Michael S. Salisbury, Paul F. Mcmanamon, Bradley D. Duncan Nov 1993

Sensitivity Improvement Of A 1-Μm Ladar System Incorporating An Active Optical Fiber Preamplifier, Michael S. Salisbury, Paul F. Mcmanamon, Bradley D. Duncan

Electro-Optics and Photonics Faculty Publications

In an effort to increase the SNR of a continuous wave, 1-μm all solid state ladar system, a rare-earth-doped optical fiber amplifier is investigated as a preamplifier for ladar return signals. The experimental system is detailed and a theoretical analysis of the fiber amplifier's effect on both heterodyne and direct detection schemes is provided. Beginning with the optical powers incident on the detector, the signal and noises are analyzed, through the detector electronics, to predict the SNR. The SNR is then plotted as a function of the return signal power, and a SNR threshold is defined to determine a minimum …


New Exactly Solvable Hamiltonians - Shape Invariance And Self-Similarity, David T. Barclay, Ranabir Dutt, Asim Gangopadhyaya, Avinash Khare, A. Pagnamenta, Uday P. Sukhatne Oct 1993

New Exactly Solvable Hamiltonians - Shape Invariance And Self-Similarity, David T. Barclay, Ranabir Dutt, Asim Gangopadhyaya, Avinash Khare, A. Pagnamenta, Uday P. Sukhatne

Physics: Faculty Publications and Other Works

We discuss in some detail the self-similar potentials of Shabat and Spiridonov which are reflectionless and have an infinite number of bound states. We demonstrate that these self-similar potentials are in fact shape invariant potentials within the formalism of supersymmetric quantum mechanics. In particular, using a scaling ansatz for the change of parameters, we obtain a large class of new, reflectionless, shape invariant potentials of which the Shabat-Spiridonov ones are a special case. These new potentials can be viewed as q-deformations of the single soliton solution corresponding to the Rosen-Morse potential. Explicit expressions for the energy eigenvalues, eigenfunctions and transmission …


Supersymmetry And The Tunneling Problem In An Asymmetric Double Well, Asim Gangopadhyaya, Prasanta K. Panigrahi, Uday P. Sukhatne Apr 1993

Supersymmetry And The Tunneling Problem In An Asymmetric Double Well, Asim Gangopadhyaya, Prasanta K. Panigrahi, Uday P. Sukhatne

Physics: Faculty Publications and Other Works

The techniques of supersymmetric quantum mechanics are applied to the calculation of the energy difference between the ground state and the first excited state of an asymmetric double well. This splitting, originating from the tunneling effect, is computed via a systematic, rapidly converging perturbation expansion. Perturbative calculations to any order can be easily carried out using a logarithmic perturbation theory. Our approach yield substantially better results than alternative widely used semiclassical analyses.


Quantam Wave Turbulence, Alejandro Garcia, M. Haeri, S. Putterman, P. Roberts Jan 1993

Quantam Wave Turbulence, Alejandro Garcia, M. Haeri, S. Putterman, P. Roberts

Faculty Publications

The nonlinear quantum kinetic equation for the interaction of sound waves is solved via analytic and numerical techniques. In the classical regime energy cascades to higher frequency (ω) according to the steady-state power law ω-3/2. In the quantum limit, the system prefers a reverse cascade of energy which follows the power law ω-6. Above a critical flux, a new type of spectrum appears which is neither self-similar nor close to equilibrium. This state of nonlinear quantum wave turbulence represents a flow of energy directly from the classical source to the quantum degrees of freedom.


Hysteresis And Anchoring Energy In Ferroelectric Liquid Crystals, Yuri Panarin Jan 1993

Hysteresis And Anchoring Energy In Ferroelectric Liquid Crystals, Yuri Panarin

Articles

The frequency dispersion of the coercive force of Ferroelectric Liquid Crystals (FLC) cells has been detected and examined in the range of infralow (lower than 0.1 Hz) frequencies. To clarify the low-frequency dispersion, the model has been suggested, based on the arrangement of free charges and well describing the experimental curves. The method for determination of the energy of FLC anchoring at the surface, developed on the basis of the static hysteresis loop, has been proposed. The dependence of bistability and the anchoring energy upon the orientant layer thickness has experimentally been investigated.