Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei May 2024

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei

All Dissertations

In an era of intensified market competition, the demand for cost-effective, high-quality, high-performance, and reliable products continues to rise. Meeting this demand necessitates the mass production of premium products through the integration of cutting-edge technologies and advanced materials while ensuring their integrity and safety. In this context, Nondestructive Testing (NDT) techniques emerge as indispensable tools for guaranteeing the integrity, reliability, and safety of products across diverse industries.

Various NDT techniques, including ultrasonic testing, computed tomography, thermography, and acoustic emissions, have long served as cornerstones for inspecting materials and structures. Among these, ultrasonic testing stands out as the most prevalent method, …


Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao May 2024

Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao

All Dissertations

This thesis presents the comprehensive design, fabrication, and demonstration of advanced high-power, high-efficiency single-mode semiconductor lasers operating at a wavelength of 9xxnm. We begin with the design of the laser epitaxial structure, serving as the cornerstone for achieving high-power high-efficiency lasers. Our methodology integrates a semi-analytical calculation model, which accounts for Longitudinal Spatial Hole Burning (LSHB) and Two-Photon Absorption (TPA) effects, facilitating a thorough exploration of how design parameters influence output power and conversion efficiency. This approach offers an effective and time-efficient epitaxial structure optimization strategy compared to conventional full 3D simulation models.

Subsequently, we demonstrate high-power, high-efficiency ridge waveguide …


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Hybridly Integrated Semiconductor Lasers And Amplifiers On Iii-V/Si3n4 Platform For Beam Combining And Other Advanced Applications, Siwei Zeng Aug 2023

Hybridly Integrated Semiconductor Lasers And Amplifiers On Iii-V/Si3n4 Platform For Beam Combining And Other Advanced Applications, Siwei Zeng

All Dissertations

Photonic integrated circuits (PICs) are devices that integrate multiple photonic functions on a small chip and allow for accurate dimension control and massive production. Similar to electronic integrated circuits, PICs can significantly reduce the system cost, size, weight, and operation power (CSWaP). Recently, the PIC technology has transformed many optical technologies which traditionally rely on tabletop systems and bulky components, such as optical interconnects, nonlinear optics, and quantum photonics, into a chip-scale platform. This device and system miniaturization has successfully led to a wide range of practical applications in computing, sensing, spectroscopy, and communication. However, the traditional passive PIC platform …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar May 2022

Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar

All Dissertations

This dissertation uses porous silicon as a material platform to explore novel optical effects in three domains: (i) It studies dispersion engineering in integrated waveguides to achieve high performance group index sensing. With proper design parameters, the sensor waveguides can theoretically achieve 6 times larger group index shift compared to the actual bulk effective refractive index shift. We demonstrate the guided mode confinement factor to be a key parameter in design and implementation of these waveguides. (ii) It explores multicolor laser illumination to experimentally demonstrate perceptually enhanced colorimetric sensing, overcoming the limitations faced by many contemporary colorimetric sensors. Our technique …


Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar May 2022

Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar

All Dissertations

An Optical tweezer is a tightly focused laser beam that applies and senses precise and localized optical force to a dielectric microsphere and offers a unique and effective tool for manipulating the single cell or cell components, including nucleotides and dynein motor proteins. Here, I used highly stabilized optomechanical components and ultra-sensitive detection modules to significantly improve the measurement capabilities over a wide range of temporal and spatial scales. I combined the optical tweezer-based force spectroscopy technique with fluorescence microscopy to develop an integrated high-resolution force-fluorescence system capable of measuring displacements at sub-nanometer, forces at sub-piconewton over a temporal range …


Quantitative Methods And Detection Techniques In Hyperspectral Imaging Involving Medical And Other Applications, Ankita Roy Aug 2007

Quantitative Methods And Detection Techniques In Hyperspectral Imaging Involving Medical And Other Applications, Ankita Roy

All Dissertations

This research using Hyperspectral imaging involves recognizing targets through spatial and spectral matching and spectral un-mixing of data ranging from remote sensing to medical imaging kernels for clinical studies based on Hyperspectral data-sets generated using the VFTHSI [Visible Fourier Transform Hyperspectral Imager], whose high resolution Si detector makes the analysis achievable. The research may be broadly classified into (I) A Physically Motivated Correlation Formalism (PMCF), which places both spatial and spectral data on an equivalent mathematical footing in the context of a specific Kernel and (II) An application in RF plasma specie detection during carbon nanotube growing process. (III) Hyperspectral …