Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda May 2022

Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda

Graduate Theses and Dissertations

Since it was first isolated and characterized in 2004, graphene has shown the potential for a technological revolution. This is due to its amazing physical properties such as high electrical conductivity, high thermal conductivity, and extreme flexibility. Freestanding graphene membranes naturally possesses an intrinsic rippled structure, and these ripples are in constant random motion even room temperatures. Occasionally, the ripples undergo spontaneous buckling (change of curvature from concave to convex and vice versa) and the potential energy associated with this is a double well potential. This movement of graphene is a potential source of vibrational energy.

In this dissertation, we …


Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva Jan 2022

Theoretical Investigation On Optical Properties Of 2d Materials And Mechanical Properties Of Polymer Composites At Molecular Level, Geeta Sachdeva

Dissertations, Master's Theses and Master's Reports

The field of two-dimensional (2D) layered materials provides a new platform for studying diverse physical phenomena that are scientifically interesting and relevant for technological applications. Theoretical predictions from atomically resolved computational simulations of 2D materials play a pivotal role in designing and advancing these developments. The focus of this thesis is 2D materials especially graphene and BN studied using density functional theory (DFT) and molecular dynamics (MD) simulations. In the first half of the thesis, the electronic structure and optical properties are discussed for graphene, antimonene, and borophene. It is found that the absorbance in (atomically flat) multilayer antimonene (group …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri May 2018

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri

Senior Theses

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance (Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained using metal electrode experiments. Due to the distinctive electronic and surface properties of graphene, there is reason to believe these estimates are inadequate. This work seeks to directly characterize the double layer capacitance of a GFET. A unique method for determining the Cdl has been implemented, and data has been obtained for three electrolytes and one ionic fluid. The results yield dramatically lower Cdl values than …


Surface Energy In Bond-Counting Models On Bravais And Non-Bravais Lattices, Tim Ryan Krumwiede May 2017

Surface Energy In Bond-Counting Models On Bravais And Non-Bravais Lattices, Tim Ryan Krumwiede

Doctoral Dissertations

Continuum models in computational material science require the choice of a surface energy function, based on properties of the material of interest. This work shows how to use atomistic bond-counting models and crystal geometry to inform this choice. We will examine some of the difficulties that arise in the comparison between these models due to differing types of truncation. New crystal geometry methods are required when considering materials with non-Bravais lattice structure, resulting in a multi-valued surface energy. These methods will then be presented in the context of the two-dimensional material graphene in a way that correctly predicts its equilibrium …