Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Physics

A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn Jan 2024

A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn

Physics Faculty Publications

The continued success of the jet substructure program will require widespread use of tracking information to enable increasingly precise measurements of a broader class of observables. The recent reformulation of jet substructure in terms of energy correlators has simplified the incorporation of universal non-perturbative matrix elements, so called “track functions”, in jet substructure calculations. These advances make it timely to understand how these universal non-perturbative functions can be extracted from hadron collider data, which is complicated by the use jet algorithms. In this paper we introduce a new class of jet functions, which we call (semi-inclusive) track jet functions, which …


Definition Of Fragmentation Functions And The Violation Of Sum Rules, John Collins, Ted C. Rogers Jan 2024

Definition Of Fragmentation Functions And The Violation Of Sum Rules, John Collins, Ted C. Rogers

Physics Faculty Publications

We point out a problem with the formulation and derivations of sum rules for quark fragmentation functions that impacts their validity in QCD, but which potentially points toward an improved understanding of final states in inclusive hard processes. Fragmentation functions give the distribution of final-state hadrons arising from a parton exiting a hard scattering, and the sum rules for momentum, electric charge, etc. express conservation of these quantities. The problem arises from a mismatch between the quark quantum numbers of the initial quark and the fact that all observed final-state hadrons are confined bound states with color zero. We point …


Gluon Transverse-Momentum-Dependent Distributions From Large-Momentum Effective Theory, Ruilin Zhu, Yao Ji, Jian-Hui Zhang, Shuai Zhao Jan 2023

Gluon Transverse-Momentum-Dependent Distributions From Large-Momentum Effective Theory, Ruilin Zhu, Yao Ji, Jian-Hui Zhang, Shuai Zhao

Physics Faculty Publications

We demonstrate that gluon transverse-momentum-dependent parton distribution functions (TMDPDFs) can be extracted from lattice calculations of appropriate Euclidean correlations in large-momentum effective theory (LaMET). Based on perturbative calculations of gluon unpolarized and helicity TMDPDFs, we present a matching formula connecting them and their LaMET counterparts, where the latter are renormalized in a scheme facilitating lattice calculations and converted to the MS ¯ scheme. The hard matching kernel is given up to one-loop level. We also show that the perturbative result is independent of the prescription used for the pinch-pole singularity in the relevant correlations. Our results offer a guidance for …


Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan Jan 2023

Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan

Physics Faculty Publications

We explore machine learning-based jet and event identification at the future Electron-Ion Collider (EIC). We study the effectiveness of machine learning-based classifiers at relatively low EIC energies, focusing on (i) identifying the flavor of the jet and (ii) identifying the underlying hard process of the event. We propose applications of our machine learning-based jet identification in the key research areas at the future EIC and current Relativistic Heavy Ion Collider program, including enhancing constraints on (transverse momentum dependent) parton distribution functions, improving experimental access to transverse spin asymmetries, studying photon structure, and quantifying the modification of hadrons and jets in …


Full Treatment Of The Thrust Distribution In Single Inclusive E⁺E⁻ → H X Processes, M. Boglione, Andrea Simonelli Jan 2023

Full Treatment Of The Thrust Distribution In Single Inclusive E⁺E⁻ → H X Processes, M. Boglione, Andrea Simonelli

Physics Faculty Publications

Extending the transverse momentum dependent factorization to thrust dependent observables entails a series of difficulties, ultimately associated to the behavior of soft radiation. As a consequence, the definition of the transverse momentum dependent functions has to be revised, while preserving (and possibly extending) their universality properties. Moreover, the regularization of the rapidity divergences generates non trivial correlations between rapidity and thrust. In this paper, we show how to deal with these correlations in a consistent treatment of the thrust dependence of e+eh X cross section, where the hadron transverse momentum is measured with respect to …


Rapidity-Only Tmd Factorization At One Loop, Ian Balitsky Jan 2023

Rapidity-Only Tmd Factorization At One Loop, Ian Balitsky

Physics Faculty Publications

Typically, a production of a particle with a small transverse momentum in hadron-hadron collisions is described by CSS-based TMD factorization at moderate Bjorken xB ~ 1 and by kT-factorization at small xB. A uniform description valid for all xB is provided by rapidity-only TMD factorization developed in a series of recent papers at the tree level. In this paper the rapidity-only TMD factorization for particle production by gluon fusion is extended to the one-loop level.


What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre Jun 2022

What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre

All Physics Faculty Publications

This is a brief, informal, and relatively low-level course on the foundations of quantum field theory. The prerequisites are undergraduate courses in quantum mechanics and electromagnetism.


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


Positivity And Renormalization Of Parton Densities, John Collins, Ted C. Rogers, Nobuo Sato Jan 2022

Positivity And Renormalization Of Parton Densities, John Collins, Ted C. Rogers, Nobuo Sato

Physics Faculty Publications

There have been recent debates about whether MS parton densities exactly obey positivity bounds (including the Soffer bound) and whether the bounds should be applied as a constraint on global fits to parton densities and on nonperturbative calculations. A recent paper [Candido et al., Can MS parton distributions be negative?, J. High Energy Phys. 11 (2020) 129] appears to provide a proof of positivity in contradiction with earlier work by other authors. We examine their derivation and find that its primary failure is in the apparently uncontroversial statement that bare parton density (or distribution) function (pdfs) are always …


Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera Jul 2020

Absence Of Landau-Peierls Instability In The Magnetic Dual Chiral Density Wave Phase Of Dense Qcd, Efrain J. Ferrer, Vivian De La Incera

Physics and Astronomy Faculty Publications and Presentations

We investigate the stability of the magnetic dual chiral density wave (MDCDW) phase of cold and dense QCD against collective low-energy fluctuations of the order parameter. The appearance of additional structures in the system free energy due to the explicit breaking of the rotational and isospin symmetries by the external magnetic field play a crucial role in the analysis. The new structures stiffen the spectrum of the thermal fluctuations in the transverse direction, thereby avoiding the Landau-Peierls instability that affects single-modulated phases at arbitrarily low temperatures. The lack of Landau-Peierls instabilities in the MDCDW phase makes this inhomogeneous phase of …


Measurements Of The Absolute Branching Fractions Of B± → K±Xcc, J. P. Lees, V. Poireau, V. Tisserand, E. Grauges Apr 2020

Measurements Of The Absolute Branching Fractions Of B± → K±Xcc, J. P. Lees, V. Poireau, V. Tisserand, E. Grauges

Faculty Publications

A study of the two-body decays B±→XccK±, where Placeholder refers to one charmonium state, is reported by the BABAR Collaboration using a data sample of 424 fb−1. The absolute determination of branching fractions for these decays are significantly improved compared to previous BABARmeasurements. Evidence is found for the decay B+X ( 3872) K +

at the Placeholder level. The absolute branching fraction Placeholder is measured for the first time. It follows that Placeholder, supporting the hypothesis of a molecular component for this resonance.


Intrinsic Transverse Momentum And Evolution In Weighted Spin Asymmetries, Jian-Wei Qiu, Ted C. Rogers, Bowen Wang Jan 2020

Intrinsic Transverse Momentum And Evolution In Weighted Spin Asymmetries, Jian-Wei Qiu, Ted C. Rogers, Bowen Wang

Physics Faculty Publications

The transverse momentum-dependent (TMD) and collinear higher twist theoretical factorization frameworks are the most frequently used approaches to describe spin-dependent hard cross sections weighted by and integrated over transverse momentum. Of particular interest is the contribution from small transverse momentum associated with the target bound state. In phenomenological applications, this contribution is often investigated using transverse momentum weighted integrals that sharply regulate the large transverse momentum contribution, for example, with Gaussian parametrizations. Since the result is a kind of hybrid of TMD and collinear (inclusive) treatments, it is important to establish if and how the formalisms are related in applications …


Entanglement Entropy, Dualities, And Deconfinement In Gauge Theories, Mohamed M. Anber, Benjamin J. Kolligs Aug 2018

Entanglement Entropy, Dualities, And Deconfinement In Gauge Theories, Mohamed M. Anber, Benjamin J. Kolligs

Portland Institute for Computational Science Publications

Computing the entanglement entropy in confining gauge theories is often accompanied by puzzles and ambiguities. In this work we show that compactifying the theory on a small circle S 1/L evades these difficulties. In particular, we study Yang-Mills theory on R3×S 1/L with double-trace deformations or adjoint fermions and hold it at temperatures near the deconfinement transition. This theory is dual to a multi-component (electric-magnetic) Coulomb gas that can be mapped either to an XY-spin model with Zp symmetry-preserving perturbations or dual Sine-Gordon model. The entanglement entropy of the dual SineGordon model exhibits an extremum at the …


Locality And Efficient Evaluation Of Lattice Composite Fields: Overlap-Based Gauge Operators, Andrei Alexandru, Ivan Horváth Jan 2017

Locality And Efficient Evaluation Of Lattice Composite Fields: Overlap-Based Gauge Operators, Andrei Alexandru, Ivan Horváth

Physics and Astronomy Faculty Publications

We propose a novel general approach to locality of lattice composite fields, which in case of QCD involves locality in both quark and gauge degrees of freedom. The method is applied to gauge operators based on the overlap Dirac matrix elements, showing for the first time their local nature on realistic path-integral backgrounds. The framework entails a method for efficient evaluation of such nonultralocal operators, whose computational cost is volume independent at fixed accuracy, and only grows logarithmically as this accuracy approaches zero. This makes computation of useful operators, such as overlap-based topological density, practical. The key notion underlying these …


Relating The Finite-Volume Spectrum And The Two And Three-Particle S Matrix For Relativistic Systems Of Identical Scalar Particles, Raúl Briceño, Maxwell T. Hansen, Stephen R. Sharpe Jan 2017

Relating The Finite-Volume Spectrum And The Two And Three-Particle S Matrix For Relativistic Systems Of Identical Scalar Particles, Raúl Briceño, Maxwell T. Hansen, Stephen R. Sharpe

Physics Faculty Publications

Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicity L. This gives the relation between the finite-volume spectrum and the infinite-volume 2 → 2, 2 → 3, and 3 → 3 scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass m, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K matrix has no singularities below the three-particle threshold. The quantization condition is exact …


Bulk Properties Of A Fermi Gas In A Magnetic Field, Michael T. Strickland, Veronica Dexheimer, D.P. Menezes Jan 2012

Bulk Properties Of A Fermi Gas In A Magnetic Field, Michael T. Strickland, Veronica Dexheimer, D.P. Menezes

Physics and Astronomy Faculty Publications

We calculate the number density, energy density, transverse pressure, longitudinal pressure and magnetization of an ensemble of spin one-half particles in the presence of a homogeneous background magnetic field. The magnetic field direction breaks spherical symmetry causing the pressure parallel to it. We present explicit formulae appropriate at zero and finite temperature for both charged and uncharged particles including the effect of the anomalous magnetic moment. We demonstrate that the resulting expressions satisfy the canonical relations, omega = -PII and Pperpendicular = PII- MB with M = (delta)(omega)/(delta)(beta) being the magnetization of the system. We numerically …


Mellin Representation Of The Graviton Bulk-To-Bulk Propagator In Ads Space, Ian Balitsky Jan 2011

Mellin Representation Of The Graviton Bulk-To-Bulk Propagator In Ads Space, Ian Balitsky

Physics Faculty Publications

A Mellin-type representation of the graviton bulk-to-bulk propagator from E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli [Nucl. Phys. B562, 330 (1999)] in terms of the integral over the product of bulk-to-boundary propagators is derived.


Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos Aug 2010

Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos

Dartmouth Scholarship

Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived time-dependent field configurations emerge dynamically during symmetry breaking in an expanding de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and an SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configurations emerge spontaneously and persist to contribute about 1.2% of the energy density of the Universe. We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this effect is a result of parametric resonance. For the SU(2) case, …


General Validity Of Reciprocity In Quantum Mechanics, P.T. Leung, H. Y. Xie, D. P. Tsai Dec 2008

General Validity Of Reciprocity In Quantum Mechanics, P.T. Leung, H. Y. Xie, D. P. Tsai

Physics Faculty Publications and Presentations

The concept of reciprocity symmetry for matter-wave propagation is established for nonrelativistic quantum mechanics with previous results in the literature extended to include nonlocal interactions. Examples are given for cases with both local and nonlocal potentials, where we show in particular that reciprocity can be violated for the motion of a charged particle in an external electromagnetic field. In addition, this symmetry is applied to interpret a recent analysis [Phys. Rev. A 64, 042716 (2001)] on the symmetry of transmission through one-dimensional complex potentials, with the emphasis that the validity of reciprocity can go beyond that of time-reversal symmetry, such …


Bubbling The False Vacuum Away, M. Gleiser, B. Rogers, J. Thorarinson Aug 2007

Bubbling The False Vacuum Away, M. Gleiser, B. Rogers, J. Thorarinson

Dartmouth Scholarship

We investigate the role of nonperturbative, bubble-like inhomogeneities on the decay rate of false- vacuum states in two and three-dimensional scalar field theories. The inhomogeneities are induced by setting up large-amplitude oscillations of the field about the false vacuum as, for example, after a rapid quench or in certain models of cosmological inflation. We show that, for a wide range of parameters, the presence of large-amplitude bubble-like inhomogeneities greatly accelerates the de- cay rate, changing it from the well-known exponential suppression of homogeneous nucleation to a power-law suppression. It is argued that this fast, power-law vacuum decay – known as …


Exact Casimir Interaction Between Eccentric Cylinders, D. A. R. Dalvit, F. C. Lombardo, F. D. Mazzitelli, R. Onofrio Aug 2006

Exact Casimir Interaction Between Eccentric Cylinders, D. A. R. Dalvit, F. C. Lombardo, F. D. Mazzitelli, R. Onofrio

Dartmouth Scholarship

The Casimir force is the ultimate background in ongoing searches for extragravitational forces in the micrometer range. Eccentric cylinders offer favorable experimental conditions for such measurements as spurious gravitational and electrostatic effects can be minimized. Here we report on the evaluation of the exact Casimir interaction between perfectly conducting eccentric cylinders using a mode summation technique, and study different limiting cases of relevance for Casimir force measurements, with potential implications for the understanding of mechanical properties of nanotubes.


Energy Landscape Of D -Dimensional Q -Balls, Marcelo Gleiser, Joel Thorarinson Mar 2006

Energy Landscape Of D -Dimensional Q -Balls, Marcelo Gleiser, Joel Thorarinson

Dartmouth Scholarship

We investigate the properties of Q-balls in d spatial dimensions. First, a generalized virial relation for these objects is obtained. We then focus on potentials V(ϕϕ†)=∑3n=1an(ϕϕ†)n, where an is a constant and n is an integer, obtaining variational estimates for their energies for arbitrary charge Q. These analytical estimates are contrasted with numerical results and their accuracy evaluated. Based on the results, we offer a simple criterion to classify large and small d-dimensional Q-balls for this class of potentials. A minimum charge is then computed and its dependence on spatial dimensionality is shown to scale as Qmin∼exp(d). We also briefly …


A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Jul 1999

A First Principles Warm Inflation Model That Solves The Cosmological Horizon And Flatness Problems, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

A quantum field theory warm inflation model is presented that solves the horizon and flatness problems. The model obtains, from the elementary dynamics of particle physics, cosmological scale factor trajectories that begin in a radiation dominated regime, enter an inflationary regime, and then smoothly exit back into a radiation dominated regime, with non-negligible radiation throughout the evolution.


Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Nov 1998

Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium …


The Electromagnetic Field Near A Dielectric Half-Space, Andrew Lang, Dr. Adam D. Helfer Oct 1998

The Electromagnetic Field Near A Dielectric Half-Space, Andrew Lang, Dr. Adam D. Helfer

College of Science and Engineering Faculty Research and Scholarship

We compute the expectations of the squares of the electric and magnetic fields in the vacuum region outside a half-space filled with a uniform non-dispersive dielectric. This gives predictions for the Casimir-Polder force on an atom in the "retarded" regime near a dielectric. We also find a positive energy density due to the electromagnetic field. This would lead, in the case of two parallel dielectric half-spaces, to a positive, separation-independent contribution to the energy density, besides the negative, separation-dependent Casimir energy. Rough estimates suggest that for a very wide range of cases, perhaps including all realizable ones, the total energy …


Mass Spectrum And Correlation Functions Of Non-Abelian Quantum Magnetic Monopoles, E. C. Marino, Rudnei O. Ramos Jan 1994

Mass Spectrum And Correlation Functions Of Non-Abelian Quantum Magnetic Monopoles, E. C. Marino, Rudnei O. Ramos

Dartmouth Scholarship

The method of quantization of magnetic monopoles based on the order-disorder duality existing between the monopole operator and the Lagrangian fields is applied to the description of the quantum magnetic monopoles of't Hooft and Polyakov in the SO(3) Georgi-Glashow model. The commutator of the monopole operator with the magnetic charge is computed explicitly, indicating that indeed the quantum monopole carries 4πg units of magnetic charge. An explicit expression for the asymptotic behavior of the monopole correlation function is derived. From this, the mass of the quantum monopole is obtained. The tree-level result for the quantum monopole mass is shown to …


Microphysical Approach To Nonequilibrium Dynamics Of Quantum Fields, Marcelo Gleiser, Rudnei O. Ramos Nov 1993

Microphysical Approach To Nonequilibrium Dynamics Of Quantum Fields, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

We examine the nonequilibrium dynamics of a self-interacting λφ4 scalar field theory. Using a real time formulation of finite temperature field theory we derive, up to two loops and O(λ2), the effective equation of motion describing the approach to equilibrium. We present a detailed analysis of the approxi- mations used in order to obtain a Langevin-like equation of motion, in which the noise and dissipation terms associated with quantum fluctuations obey a fluctuation-dissipation relation. We show that, in general, the noise is colored (time-dependent) and multiplicative (couples nonlinearly to the field), even though it is still Gaussian distributed. The noise …