Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe Jan 2023

The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe

Electrical & Computer Engineering Faculty Publications

The effect of the thickness of the dielectric boundary layer that connects a material of refractive index n1 to another of index n2is considered for the propagation of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a specially chosen non-commuting sequence of collision and streaming operators acting on a basis set of qubits, is theoretically determined that recovers the Maxwell equations to second-order in a small parameter ϵ. For very thin boundary layer the scattering properties of the pulse mimics that found from the Fresnel jump conditions for a plane wave - except that …


Dynamics Of Transmission In Disordered Topological Insulators, Yuhao Kang, Yiming Huang, Azriel Genack Jan 2021

Dynamics Of Transmission In Disordered Topological Insulators, Yuhao Kang, Yiming Huang, Azriel Genack

Publications and Research

Robust transmission in topological insulators makes it possible to steer waves without attenuation along bent paths within imperfectly fabricated photonic devices. But the absence of reflection does not guarantee the fidelity of pulsed transmission which is essential for core photonic functionalities. Pulse transmission is disrupted by localized modes in the bulk of topological insulators which coexist with the continuum edge mode and are pushed deeper into the band gap with increasing disorder. Here we show in simulations of the Haldane model that pulse propagation in disordered topological insulators is robust throughout the central portion of the band gap where localized …


Plasma Generation By Ultrashort Multi-Chromatic Pulses During Nonlinear Propagation, Jeremy R. Gulley, Jiexi Liao, Thomas E. Lanier Mar 2014

Plasma Generation By Ultrashort Multi-Chromatic Pulses During Nonlinear Propagation, Jeremy R. Gulley, Jiexi Liao, Thomas E. Lanier

Faculty and Research Publications

The use of femtosecond lasers in industrial, biomedical, and defense related applications during the last 15 years has necessitated a detailed understanding of pulse propagation coupled with ultrafast laser-material interactions. Current models of ultrashort pulse propagation in solids describe the pulse evolution of fields with broad spectra and are typically coupled to models of ionization and laser-plasma interaction that assume monochromatic laser fields. In this work we address some of the errors introduced by combining these inconsistent descriptions. In particular, we show that recently published experiments and simulations demonstrate how this contradiction can produce order-of-magnitude errors in calculating the ionization …