Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Building A Quantum Engineering Undergraduate Program, Abraham Asfaw, Alexandre Blais, Kenneth R. Brown, Jonathan Candelaria, Christopher Cantwell, Lincoln D. Carr, Joshua Combes, Dripto M. Debroy, John M. Donohue, Sophia E. Economou, Emily Edwards, Michael F. J. Fox, Steven M. Girvin, Alan Ho, Hilary M. Hurst, Zubin Jacob, Blake R. Johnson, Ezekiel Johnston-Halperin, Robert Joynt, Eliot Kapit, Judith Klein-Seetharaman, Martin Laforest, H. J. Lewandowski, Theresa W. Lynn, Corey Rae H. Mcrae, Celia Merzbacher, Spyridon Michalakis, Prineha Narang, William D. Oliver, Jens Palsberg, David P. Pappas, Michael G. Raymer, David J. Reilly, Mark Saffman, Thomas A. Searles, Jeffrey H. Shapiro, Chandralekha Singh Feb 2022

Building A Quantum Engineering Undergraduate Program, Abraham Asfaw, Alexandre Blais, Kenneth R. Brown, Jonathan Candelaria, Christopher Cantwell, Lincoln D. Carr, Joshua Combes, Dripto M. Debroy, John M. Donohue, Sophia E. Economou, Emily Edwards, Michael F. J. Fox, Steven M. Girvin, Alan Ho, Hilary M. Hurst, Zubin Jacob, Blake R. Johnson, Ezekiel Johnston-Halperin, Robert Joynt, Eliot Kapit, Judith Klein-Seetharaman, Martin Laforest, H. J. Lewandowski, Theresa W. Lynn, Corey Rae H. Mcrae, Celia Merzbacher, Spyridon Michalakis, Prineha Narang, William D. Oliver, Jens Palsberg, David P. Pappas, Michael G. Raymer, David J. Reilly, Mark Saffman, Thomas A. Searles, Jeffrey H. Shapiro, Chandralekha Singh

Faculty Research, Scholarly, and Creative Activity

Contribution: A roadmap is provided for building a quantum engineering education program to satisfy U.S. national and international workforce needs.

Background: The rapidly growing quantum information science and engineering (QISE) industry will require both quantum-aware and quantum-proficient engineers at the bachelor's level.

Research Question: What is the best way to provide a flexible framework that can be tailored for the full academic ecosystem?

Methodology: A workshop of 480 QISE researchers from across academia, government, industry, and national laboratories was convened to draw on best practices; representative authors developed this roadmap.

Findings: 1) For quantum-aware engineers, …


Feedback Induced Magnetic Phases In Binary Bose-Einstein Condensates, Hilary M. Hurst, Shangjie Guo, I. B. Spielman Dec 2020

Feedback Induced Magnetic Phases In Binary Bose-Einstein Condensates, Hilary M. Hurst, Shangjie Guo, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective interactions that enter into the stochastic equation governing system dynamics. The effective interactions are tunable and can be made analogous to Feshbach resonances -- spin-independent and spin-dependent -- but without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement backaction and we present …


Non-Hermitian Topology Of One-Dimensional Spin-Torque Oscillator Arrays, Benedetta Flebus, Rembert A. Duine, Hilary M. Hurst Nov 2020

Non-Hermitian Topology Of One-Dimensional Spin-Torque Oscillator Arrays, Benedetta Flebus, Rembert A. Duine, Hilary M. Hurst

Faculty Research, Scholarly, and Creative Activity

Magnetic systems have been extensively studied both from a fundamental physics perspective and as building blocks for a variety of applications. Their topological properties, in particular those of excitations, remain relatively unexplored due to their inherently dissipative nature. The recent introduction of non-Hermitian topological classifications opens up new opportunities for engineering topological phases in dissipative systems. Here, we propose a magnonic realization of a non-Hermitian topological system. A crucial ingredient of our proposal is the injection of spin current into the magnetic system, which alters and can even change the sign of terms describing dissipation. We show that the magnetic …


Quantum Control With Spinor Bose-Einstein Condensates, Hilary M. Hurst Feb 2020

Quantum Control With Spinor Bose-Einstein Condensates, Hilary M. Hurst

Faculty Research, Scholarly, and Creative Activity

Understanding and controlling many-body quantum systems in noisy environments is paramount to developing robust quantum technologies. An external environment can be thought of as a measurement reservoir which extracts information about the quantum system. Cold atoms are well suited to examine system-environment interaction via weak (i.e. minimally destructive) measurement techniques, wherein the measurement probe acts as the environment and also provides a noisy record of system dynamics. The measurement record can then be used in a feedback scheme, opening the door to real time control of quantum gases. In this talk I discuss our theoretical proposal to use weak measurement …


Electron-Induced Massive Dynamics Of Magnetic Domain Walls, Hilary M. Hurst, Victor Galitski, Tero T. Heikkilä Feb 2020

Electron-Induced Massive Dynamics Of Magnetic Domain Walls, Hilary M. Hurst, Victor Galitski, Tero T. Heikkilä

Faculty Research, Scholarly, and Creative Activity

We study the dynamics of domain walls (DWs) in a metallic, ferromagnetic nanowire. We develop a Keldysh collective coordinate technique to describe the effect of conduction electrons on rigid magnetic structures. The effective Lagrangian and Langevin equations of motion for a DW are derived. The DW dynamics is described by two collective degrees of freedom: position and tilt-angle. The coupled Langevin equations therefore involve two correlated noise sources, leading to a generalized fluctuation-dissipation theorem (FDT). The DW response kernel due to electrons contains two parts: one related to dissipation via FDT, and another `inertial' part. We prove that the latter …


Transport Signatures Of Dirac States In Topological Insulator - Ferromagnet Heterostructures, Hilary M. Hurst Nov 2019

Transport Signatures Of Dirac States In Topological Insulator - Ferromagnet Heterostructures, Hilary M. Hurst

Faculty Research, Scholarly, and Creative Activity

No abstract provided.


Measurement-Induced Dynamics And Stabilization Of Spinor-Condensate Domain Walls, Hilary M. Hurst, I. B. Spielman May 2019

Measurement-Induced Dynamics And Stabilization Of Spinor-Condensate Domain Walls, Hilary M. Hurst, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

Weakly measuring many-body systems and allowing for feedback in real-time can simultaneously create and measure new phenomena in strongly correlated quantum systems. We study the dynamics of a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a domain wall, and focus on the trade-off between usable information obtained from measurement and quantum backaction. Each weakly measured system yields a measurement record from which we extract real-time dynamics of the domain wall. We show that quantum backaction due to measurement causes two primary effects: domain wall diffusion and overall heating. The system dynamics and signal-to-noise ratio depend on the choice of …


Induced Quantum Dot Probe For Material Characterization, Yun-Pil Shim, Rusko Ruskov, Hilary M. Hurst, Charles Tahan Apr 2019

Induced Quantum Dot Probe For Material Characterization, Yun-Pil Shim, Rusko Ruskov, Hilary M. Hurst, Charles Tahan

Faculty Research, Scholarly, and Creative Activity

We propose a non-destructive means of characterizing a semiconductor wafer via measuring parameters of an induced quantum dot on the material system of interest with a separate probe chip that can also house the measurement circuitry. We show that a single wire can create the dot, determine if an electron is present, and be used to measure critical device parameters. Adding more wires enables more complicated (potentially multi-dot) systems and measurements. As one application for this concept we consider silicon metal-oxide-semiconductor and silicon/silicon-germanium quantum dot qubits relevant to quantum computing and show how to measure low-lying excited states (so-called "valley" …


Status Of The Los Alamos Room Temperature Neutorn Electric Dipole Moment Search, Robert W. Pattie Jr. Apr 2019

Status Of The Los Alamos Room Temperature Neutorn Electric Dipole Moment Search, Robert W. Pattie Jr.

ETSU Faculty Works

A discovery of the neutron's permanent electric dipole moment larger than the standard model prediction of dn ≈ 10-31 e·cm would signal a new source of CP-violation and help explain the matter-antimatter asymmetry in the universe. Tightening the limits on dn constrain extensions to the standard model in a complementary fashion to the atomic and electron EDM searches. The recent upgrade of the Los Alamos ultracold neutron source makes it possible for a new room temperature search with the statistical reach to improve upon current limits by a factor of 10 or more. During the 2018 LANSCE …


Monte Carlo Of Trapped Ultracold Neutrons In The Ucnτ Trap, Nathan Callahan, Chen-Yu Liu, Fransisco Gonzalez, Evan Adamek, James D. Bowman, Leah J. Broussard, S. M. Clayton, S. Currie, C. Cude-Woods, E. B. Dees, X. Ding, E. M. Egnel, D. Fellers, W. Fox, Peter Geltenbort, Kevin P. Hickerson, M. A. Hoffbauer, A. T. Holley, A. Komives, S. W.T. Macdonald, Marc Makela, C. L. Morris, J. D. Ortiz, Robert W. Pattie Jr., J. Ramsey, D. J. Salvat, A. Saunders, Susan J. Seestrom, E. I. Sharapov, Sky L. Sjue, Z. Tang, J. Vanderwerp, B. Vogelaar, P. L. Walstrom, Z. Wang, H. Weaver, W. Wei, J. Wexler, A. R. Young, B. A. Zeck Oct 2018

Monte Carlo Of Trapped Ultracold Neutrons In The Ucnτ Trap, Nathan Callahan, Chen-Yu Liu, Fransisco Gonzalez, Evan Adamek, James D. Bowman, Leah J. Broussard, S. M. Clayton, S. Currie, C. Cude-Woods, E. B. Dees, X. Ding, E. M. Egnel, D. Fellers, W. Fox, Peter Geltenbort, Kevin P. Hickerson, M. A. Hoffbauer, A. T. Holley, A. Komives, S. W.T. Macdonald, Marc Makela, C. L. Morris, J. D. Ortiz, Robert W. Pattie Jr., J. Ramsey, D. J. Salvat, A. Saunders, Susan J. Seestrom, E. I. Sharapov, Sky L. Sjue, Z. Tang, J. Vanderwerp, B. Vogelaar, P. L. Walstrom, Z. Wang, H. Weaver, W. Wei, J. Wexler, A. R. Young, B. A. Zeck

ETSU Faculty Works

In the UCNτ experiment, ultracold neutrons (UCN) are confined by magnetic fields and the Earth’s gravitational field. Field-trapping mitigates the problem of UCN loss on material surfaces, which caused the largest correction in prior neutron experiments using material bottles. However, the neutron dynamics in field traps differ qualitatively from those in material bottles. In the latter case, neutrons bounce off material surfaces with significant diffusivity and the population quickly reaches a static spatial distribution with a density gradient induced by the gravitational potential. In contrast, the field-confined UCN—whose dynamics can be described by Hamiltonian mechanics—do not exhibit the stochastic behaviors …


Kinetic Theory Of Dark Solitons With Tunable Friction, Hilary M. Hurst, Dimitry K. Efimkin, I. B. Spielman, Victor Galitski May 2017

Kinetic Theory Of Dark Solitons With Tunable Friction, Hilary M. Hurst, Dimitry K. Efimkin, I. B. Spielman, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a non-interacting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semi-classical dynamics of the dark soliton, a particle-like object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative mass …


Brownian Motion Of Solitons In A Bose-Einstein Condensate, Lauren M. Aycock, Hilary M. Hurst, Dimitry K. Efimkin, Dina Genkina, Hsin-I Lu, Victor M. Galitski, I. B. Spielman Feb 2017

Brownian Motion Of Solitons In A Bose-Einstein Condensate, Lauren M. Aycock, Hilary M. Hurst, Dimitry K. Efimkin, Dina Genkina, Hsin-I Lu, Victor M. Galitski, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated 87 Rb Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one-dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent …


Real-Space Mean-Field Theory Of A Spin-1 Bose Gas In Synthetic Dimensions, Hilary M. Hurst, Justin H. Wilson, J. H. Pixley, I. B. Spielman, Stefan S. Natu Dec 2016

Real-Space Mean-Field Theory Of A Spin-1 Bose Gas In Synthetic Dimensions, Hilary M. Hurst, Justin H. Wilson, J. H. Pixley, I. B. Spielman, Stefan S. Natu

Faculty Research, Scholarly, and Creative Activity

The internal degrees of freedom provided by ultracold atoms give a route for realizing higher dimensional physics in systems with limited spatial dimensions. Non-spatial degrees of freedom in these systems are dubbed "synthetic dimensions". This connection is useful from an experimental standpoint but complicated by the fact that interactions alter the condensate ground state. Here we use the Gross-Pitaevskii equation to study ground state properties of a spin-1 Bose gas under the combined influence of an optical lattice, spin-orbit coupling, and interactions at the mean field level. The associated phases depend on the sign of the spin-dependent interaction parameter and …


"Blinded By The Lines: Mid-Ir Spectra Of Mira Variables Taken With Spitzer", Dana Baylis-Aguirre, Michelle J. Creech-Eakman, Donald G. Luttermoser, Tina Gueth Sep 2016

"Blinded By The Lines: Mid-Ir Spectra Of Mira Variables Taken With Spitzer", Dana Baylis-Aguirre, Michelle J. Creech-Eakman, Donald G. Luttermoser, Tina Gueth

ETSU Faculty Works

We present preliminary analysis of mid-infrared spectra of M-type and C-type Mira variables. Due to the brightness of this sample, it is straightforward to monitor changes with phase in the infrared spectral features of these regular pulsators. We have spectra of 25 Mira variables, taken with phase, using the Spitzer Infrared Spectrograph (IRS) high-resolution module. Each star has multiple spectra obtained over a one-year period from 2008-09. This is a rich, unique data set due to multiple observations of each star and the high signal-to-noise ratio from quick exposure times to prevent saturation of the IRS instrument. This paper focuses …


Transport Of Dirac Electrons In A Random Magnetic Field In Topological Heterostructures, Hilary M. Hurst, Dimitry K. Efimkin, Victor Galitski Jun 2016

Transport Of Dirac Electrons In A Random Magnetic Field In Topological Heterostructures, Hilary M. Hurst, Dimitry K. Efimkin, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We consider the proximity effect between Dirac states at the surface of a topological insulator and a ferromagnet with easy plane anisotropy, which is described by the XY model and undergoes a Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The surface states of the topological insulator interacting with classical magnetic fluctuations of the ferromagnet can be mapped onto the problem of Dirac fermions in a random magnetic field. However, this analogy is only partial in the presence of electron-hole asymmetry or warping of the Dirac dispersion, which results in screening of magnetic fluctuations. Scattering at magnetic fluctuations influences the behavior of the surface …


Charged Skyrmions On The Surface Of A Topological Insulator, Hilary M. Hurst, Dimitry K. Efimkin, Jiadong Zang, Victor Galitski Feb 2015

Charged Skyrmions On The Surface Of A Topological Insulator, Hilary M. Hurst, Dimitry K. Efimkin, Jiadong Zang, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We consider the interplay between magnetic skyrmions in an insulating thin film and the Dirac surface states of a 3D topological insulator (TI), coupled by proximity effect. The magnetic texture of skyrmions can lead to confinement of Dirac states at the skyrmion radius, where out of plane magnetization vanishes. This confinement can result in charging of the skyrmion texture. The presence of bound states is robust in an external magnetic field, which is needed to stabilize skyrmions. It is expected that for relevant experimental parameters skyrmions will have a few bound states that can be tuned using an external magnetic …