Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Double Distributions And Pseudodistributions, A. V. Radyushkin Jan 2024

Double Distributions And Pseudodistributions, A. V. Radyushkin

Physics Faculty Publications

We describe the approach to lattice extraction of generalized parton distributions (GPDs) that is based on the use of the double distribution (DD) formalism within the pseudodistribution framework. The advantage of using DDs is that GPDs obtained in this way have the mandatory polynomiality property, a nontrivial correlation between 𝓍 and ξ dependences of GPDs. Another advantage of using DDs is that the D-term appears as an independent entity in the DD formalism rather than a part of GPDs H and E. We relate the ξ dependence of GPDs to the width of the α profiles of the corresponding DDs …


Gluon Helicity From Global Analysis Of Experimental Data And Lattice Qcd Ioffe Time Distributions, J. Karpie, R. M. Whitehill, W. Melnitchouk, C. Monahan, K. Orginos, J.-W. Qui, D. G. Richards, N. Sato, S. Zafeiropoulos, Jefferson Lab Angular Momentum And Hadstruc Collaboration Jan 2024

Gluon Helicity From Global Analysis Of Experimental Data And Lattice Qcd Ioffe Time Distributions, J. Karpie, R. M. Whitehill, W. Melnitchouk, C. Monahan, K. Orginos, J.-W. Qui, D. G. Richards, N. Sato, S. Zafeiropoulos, Jefferson Lab Angular Momentum And Hadstruc Collaboration

Physics Faculty Publications

We perform a new global analysis of spin-dependent parton distribution functions with the inclusion of Ioffe time pseudodistributions computed in lattice QCD (LQCD), which are directly sensitive to the gluon helicity distribution, Δg. These lattice data have an analogous relationship to parton distributions as do experimental cross sections, and can be readily included in global analyses. We focus in particular on the constraining capability of current LQCD data on the sign of Δg at intermediate parton momentum fractions x, which was recently brought into question by analysis of data in the absence of parton positivity constraints. …


Analytic Continuation Of The Relativistic Three-Particle Scattering Amplitudes, Sebastian M. Dawid, Md Habib E. Islam, Raúl A. Briceño Jan 2023

Analytic Continuation Of The Relativistic Three-Particle Scattering Amplitudes, Sebastian M. Dawid, Md Habib E. Islam, Raúl A. Briceño

Physics Faculty Publications

We investigate the relativistic scattering of three identical scalar bosons interacting via pair-wise interactions. Extending techniques from the nonrelativistic three-body scattering theory, we provide a detailed and general prescription for solving and analytically continuing integral equations describing the three-body reactions. We use these techniques to study a system with zero angular momenta described by a single scattering length leading to a bound state in a two-body subchannel. We obtain bound-state-particle and three-particle amplitudes in the previously unexplored kinematical regime; in particular, for real energies below elastic thresholds and complex energies in the physical and unphysical Riemann sheets. We extract positions …


Three-Body Scattering And Quantization Conditions From S-Matrix Unitarity, Andrew W. Jackura Jan 2023

Three-Body Scattering And Quantization Conditions From S-Matrix Unitarity, Andrew W. Jackura

Physics Faculty Publications

Two methodologies have been presented in the literature which connect relativistic three-particle scattering amplitudes with lattice QCD spectra—the “relativistic effective field theory” approach and the “finite-volume unitarity” method. While both methods have been shown to be equivalent in various works, it has not been shown how to arrive at the relativistic effective field theory results directly from S-matrix unitarity. In this work, we provide a simple proof of the relativistic effective field theory form of the scattering equations directly from unitarity. Motivated by the finite-volume unitarity approach, we then postulate a set of quantization conditions which relate the finite-volume energy …


Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Christopher J. Monahan Jan 2021

Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Christopher J. Monahan

Physics Faculty Publications

We present a model-independent framework to determine finite-volume corrections of matrix elements of spatially separated current-current operators. We define these matrix elements in terms of Compton-like amplitudes, i.e., amplitudes coupling single-particle states via two current insertions. We show that the infrared behavior of these matrix elements is dominated by the single-particle pole, which is approximated by the elastic form factors of the lowest-lying hadron. Therefore, given lattice data on the relevant elastic form factors, the finite-volume effects can be estimated nonperturbatively and without recourse to effective field theories. For illustration purposes, we investigate the implications of the proposed formalism for …


On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman Jan 2021

On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman

Physics Faculty Publications

This work explores scattering amplitudes that couple two-particle systems via a single external current insertion, 2 + J → 2. Such amplitudes can provide structural information about the excited QCD spectrum. We derive an exact analytic representation for these reactions. From these amplitudes, we show how to rigorously define resonance and bound-state form factors. Furthermore, we explore the consequences of the narrow-width limit of the amplitudes as well as the role of the Ward-Takahashi identity for conserved vector currents. These results hold for any number of two-body channels with no intrinsic spin, and a current with arbitrary Lorentz structure and …


Solving Relativistic Three-Body Integral Equations In The Presence Of Bound States, Andrew W. Jackura, Raúl A. Briceño, Sebastian M. Dawid, Md. Habib E. Islam, Connor Mccarty Jan 2021

Solving Relativistic Three-Body Integral Equations In The Presence Of Bound States, Andrew W. Jackura, Raúl A. Briceño, Sebastian M. Dawid, Md. Habib E. Islam, Connor Mccarty

Physics Faculty Publications

We present a simple scheme for solving relativistic integral equations for the partial-wave projected three-body amplitudes. Our techniques are used to solve a problem of three scalar particles with a formation of a S-wave two-body bound state. We rewrite the problem in a form suitable for numerical solution and then explore three solving strategies. In particular, we discuss different ways of incorporating the bound-state pole contribution in the integral equations. All of them lead to agreement with previous results obtained using finite-volume spectra of the same theory, providing further evidence of the validity of the existing finite- and infinite-volume formalism …


Nonperturbatively Renormalized Glue Momentum Fraction At The Physical Pion Mass From Lattice Qcd, Yi-Bo Yang, Ming Gong, Jian Liang, Huey-Wen Lin, Keh-Fei Liu, Dimitra Pefkou, Phiala Shanahan Oct 2018

Nonperturbatively Renormalized Glue Momentum Fraction At The Physical Pion Mass From Lattice Qcd, Yi-Bo Yang, Ming Gong, Jian Liang, Huey-Wen Lin, Keh-Fei Liu, Dimitra Pefkou, Phiala Shanahan

Physics and Astronomy Faculty Publications

We present the first nonperturbatively renormalized determination of the glue momentum fraction ⟨xg in the nucleon, based on lattice-QCD simulations at the physical pion mass using the cluster-decomposition error reduction technique. We provide the first practical strategy to renormalize the gauge energy-momentum tensor nonperturbatively in the regularization-independent momentum-subtraction (RI/MOM) scheme and convert the results to the MS¯ scheme with one-loop matching. The simulation results show that the cluster-decomposition error reduction technique can reduce the statistical uncertainty of its renormalization constant by a factor of O(300) in calculations using a typical state-of-the-art lattice volume, and the nonperturbatively …


Ri/Mom And Ri/Smom Renormalization Of Overlap Quark Bilinears On Domain Wall Fermion Configurations, Yujiang Bi, Hao Cai, Ying Chen, Ming Gong, Keh-Fei Liu, Zhaofeng Liu, Yi-Bo Yang May 2018

Ri/Mom And Ri/Smom Renormalization Of Overlap Quark Bilinears On Domain Wall Fermion Configurations, Yujiang Bi, Hao Cai, Ying Chen, Ming Gong, Keh-Fei Liu, Zhaofeng Liu, Yi-Bo Yang

Physics and Astronomy Faculty Publications

Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar, and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the MS¯ scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is 483 × 96 and the inverse spacing 1/a = 1.730(4)  GeV.


Variance Reduction And Cluster Decomposition, Keh-Fei Liu, Jian Liang, Yi-Bo Yang Feb 2018

Variance Reduction And Cluster Decomposition, Keh-Fei Liu, Jian Liang, Yi-Bo Yang

Physics and Astronomy Faculty Publications

It is a common problem in lattice QCD calculation of the mass of the hadron with an annihilation channel that the signal falls off in time while the noise remains constant. In addition, the disconnected insertion calculation of the three-point function and the calculation of the neutron electric dipole moment with the θ term suffer from a noise problem due to the √V fluctuation. We identify these problems to have the same origin and the √V problem can be overcome by utilizing the cluster decomposition principle. We demonstrate this by considering the calculations of the glueball mass, the …


Resonances From Lattice Qcd, Raúl A. Briceño Jan 2018

Resonances From Lattice Qcd, Raúl A. Briceño

Physics Faculty Publications

The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows for …


Evolution Equations For Connected And Disconnected Sea Parton Distributions, Keh-Fei Liu Aug 2017

Evolution Equations For Connected And Disconnected Sea Parton Distributions, Keh-Fei Liu

Physics and Astronomy Faculty Publications

It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.


Locality And Efficient Evaluation Of Lattice Composite Fields: Overlap-Based Gauge Operators, Andrei Alexandru, Ivan Horváth Jan 2017

Locality And Efficient Evaluation Of Lattice Composite Fields: Overlap-Based Gauge Operators, Andrei Alexandru, Ivan Horváth

Physics and Astronomy Faculty Publications

We propose a novel general approach to locality of lattice composite fields, which in case of QCD involves locality in both quark and gauge degrees of freedom. The method is applied to gauge operators based on the overlap Dirac matrix elements, showing for the first time their local nature on realistic path-integral backgrounds. The framework entails a method for efficient evaluation of such nonultralocal operators, whose computational cost is volume independent at fixed accuracy, and only grows logarithmically as this accuracy approaches zero. This makes computation of useful operators, such as overlap-based topological density, practical. The key notion underlying these …


Quasi-Parton Distribution Fuctions, Momentum Distributions, And Pseudo-Parton Distribution Functions, A. V. Radyushkin Jan 2017

Quasi-Parton Distribution Fuctions, Momentum Distributions, And Pseudo-Parton Distribution Functions, A. V. Radyushkin

Physics Faculty Publications

We show that quasi-parton distribution functions (quasi-PDFs) may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p3 ≳ 3 GeV momenta to get reasonably close to the PDF limit. As an alternative approach, we propose using pseudo-PDFs P(x, z²3) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M(v, z²3), the functions of the Ioffe time v = p3z3 and the distance parameter z²3 with respect to which it …