Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Helium

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 54

Full-Text Articles in Physics

On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang Jan 2023

On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang

Bioelectrics Publications

Dielectric barrier discharges (DBD) are widely utilised non-equilibrium atmospheric pressure plasmas with a diverse range of applications, such as material processing, surface treatment, light sources, pollution control, and medicine. Over the course of several decades, extensive research has been dedicated to the generation of homogeneous DBD (H-DBD), focussing on understanding the transition from H-DBD to filamentary DBD and exploring strategies to create and sustain H-DBD. This paper first discusses the influence of various parameters on DBD, including gas flow, dielectric material, surface conductivity, and mesh electrode. Secondly, a chronological literature review is presented, highlighting the development of H-DBD and the …


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Helium Tune-Out Wavelength: Gauge Invariance And Retardation Corrections, Gordon W. F. Drake, Jacob Gabriel Manalo, Pei-Pei Zhang, Kenneth George Herbert Baldwin Mar 2019

Helium Tune-Out Wavelength: Gauge Invariance And Retardation Corrections, Gordon W. F. Drake, Jacob Gabriel Manalo, Pei-Pei Zhang, Kenneth George Herbert Baldwin

Physics Publications

The problem of calculating the tune-out wavelength for an atom interacting with a plane electromagnetic wave is formulated as a zero in the Rayleigh scattering cross section, rather than a zero in the dynamic polarizability. Retardation (finite wavelength) corrections are discussed in the velocity gauge, and possible gauge transformations to a length form are investigated. For the special case of S-states, it is shown that a pure length form exists for the leading pxz retardation correction, even though one does not exist in general. The results of high-precision calculations in Hylleraas coordinates are presented for the tune-out wavelength of …


Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong Feb 2018

Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong

Bioelectrics Publications

In plasma cancer therapy, the inactivation of cancer cells under plasma treatment is closely related to the reactive oxygen and nitrogen species (RONS) induced by plasmas. Quantitative study on the plasma-induced RONS that related to cancer cells apoptosis is critical for advancing the research of plasma cancer therapy. In this paper, the effects of several reactive species on the inactivation of LP-1 myeloma cancer cells are comparatively studied with variable working gas composition, surrounding gas composition, and discharge power. The results show that helium plasma jet has a higher cell inactivation efficiency than argon plasma jet under the same discharge …


Kinetics Of High Pressure Argon-Helium Pulsed Gas Discharge, Daniel J. Emmons, David E. Weeks May 2017

Kinetics Of High Pressure Argon-Helium Pulsed Gas Discharge, Daniel J. Emmons, David E. Weeks

Faculty Publications

Simulations of a pulsed direct current discharge are performed for a 7% argon in helium mixture at a pressure of 270 Torr using both zero- and one-dimensional models. Kinetics of species relevant to the operation of an optically pumped rare-gas laser are analyzed throughout the pulse duration to identify key reaction pathways. Time dependent densities, electron temperatures, current densities, and reduced electric fields in the positive column are analyzed over a single 20 μs pulse, showing temporal agreement between the two models. Through the use of a robust reaction rate package, radiation trapping is determined to play a key role …


Theory Of Noncontact Friction For Atom-Surface Interactions, Ulrich D. Jentschura, M. Janke, Maarten F M De Kieviet Aug 2016

Theory Of Noncontact Friction For Atom-Surface Interactions, Ulrich D. Jentschura, M. Janke, Maarten F M De Kieviet

Physics Faculty Research & Creative Works

The noncontact (van der Waals) friction is an interesting physical effect, which has been the subject of controversial scientific discussion. The direct friction term due to the thermal fluctuations of the electromagnetic field leads to a friction force proportional to 1/Z5 (where Z is the atom-wall distance). The backaction friction term takes into account the feedback of thermal fluctuations of the atomic dipole moment onto the motion of the atom and scales as 1/Z8. We investigate noncontact friction effects for the interactions of hydrogen, ground-state helium, and metastable helium atoms with α-quartz (SiO2), gold (Au), …


Comparison Between Electropositive And Electronegative Cold Atmospheric-Pressure Plasmas: A Modelling Study, Ding X. Liu, Jia F. Li, Ai J. Yang, Xiao H. Wang, Ming Z. Rong, Michael G. Kong Jan 2016

Comparison Between Electropositive And Electronegative Cold Atmospheric-Pressure Plasmas: A Modelling Study, Ding X. Liu, Jia F. Li, Ai J. Yang, Xiao H. Wang, Ming Z. Rong, Michael G. Kong

Bioelectrics Publications

Cold atmospheric-pressure He + N2 and He + O2 plasmas are chosen as the representatives for electropositive and electronegative plasmas, of which the discharge characteristics are studied and then compared to each other by fluid models. As the increase of the impurity (N2 or O2) fraction from 0 to 10%, for He + N2 plasmas the electron density and ion density increase, the spatiotemporal distributions of electron density, ion density, electron temperature and electron generation rate change a little. On contrast, for He + O2 plasmas the electron density decreases, the ion density …


Computational Modeling Of Doped Helium Clusters, Ryan Carlsen May 2014

Computational Modeling Of Doped Helium Clusters, Ryan Carlsen

Physics Capstone Projects

Prior to starting my coursework for this class, I had little experience in this area. I had done some related coursework in physical chemistry and computer science, but I had little direct experience. Thus, over the course of the year I learned very many things that are important to the research, but I did not reach a stage at which a lot of output occurred. Thus, in general this is a report of the things that I learned that will enable me to be effective in generating research output in the future, as I plan to continue participating int his …


Four Body Charge Transfer Process In Proton Helium Collision, Ujjal Chowdhury, Allison L. Harris, Jerry Peacher, Don H. Madison Jul 2012

Four Body Charge Transfer Process In Proton Helium Collision, Ujjal Chowdhury, Allison L. Harris, Jerry Peacher, Don H. Madison

Physics Faculty Research & Creative Works

Recent advancements in experimental techniques now allow for the study of fully differential cross sections for 4-body collisions. Theoretical fully differential cross sections will be presented and compared with absolute experimental data for transfer-excitation in proton-helium collisions. The role of different scattering mechanism will be discussed.


Fully Differential Cross Section For Four Body Charge Transfer Process, Ujjal Chowdhury, Allison L. Harris, Jerry Peacher, Don H. Madison Jul 2012

Fully Differential Cross Section For Four Body Charge Transfer Process, Ujjal Chowdhury, Allison L. Harris, Jerry Peacher, Don H. Madison

Physics Faculty Research & Creative Works

Recently experimental fully differential cross sections (FDCS) have been reported for double capture in proton helium collisions which disagree with existing theoretical calculations by two orders of magnitude. We introduce here a theoretical model for charge transfer processes which is fully quantum mechanical and takes all post collision interactions (PCI) between the particles into account exactly. The results of this model are in much better agreement with experimental data.


Strongly Enhanced Backward Emission Of Electrons In Transfer And Ionization, Michael Schulz, Xincheng Wang, M. Gundmundsson, Katharina R. Schneider, Aditya H. Kelkar, Alexander B. Voitkiv, B. Najjari, Markus S. Schoffler, Lothar Ph H H Schmidt, Reinhard Dorner, Joachim Hermann Ullrich, Robert Moshammer, Daniel Fischer Jan 2012

Strongly Enhanced Backward Emission Of Electrons In Transfer And Ionization, Michael Schulz, Xincheng Wang, M. Gundmundsson, Katharina R. Schneider, Aditya H. Kelkar, Alexander B. Voitkiv, B. Najjari, Markus S. Schoffler, Lothar Ph H H Schmidt, Reinhard Dorner, Joachim Hermann Ullrich, Robert Moshammer, Daniel Fischer

Physics Faculty Research & Creative Works

We studied three-dimensional angular distributions and longitudinal momentum spectra of electrons ejected in transfer plus ionization (TI), i.e., the ejection of one and the capture of a second target electron, for ion-helium collisions. We observe a pronounced structure strongly focused opposite to the projectile beam direction, which we associate with a new correlated TI mechanism proposed recently. This process contributes significantly to the total cross sections over a broad range of perturbations η, even at η as large as 0.5, where uncorrelated TI mechanisms were thought to be dominant.


Double Ionization Of Helium By Highly-Charged-Ion Impact Analyzed Within The Frozen-Correlation Approximation, Marcelo F. Ciappina, Tom Kirchner, Michael Schulz Sep 2011

Double Ionization Of Helium By Highly-Charged-Ion Impact Analyzed Within The Frozen-Correlation Approximation, Marcelo F. Ciappina, Tom Kirchner, Michael Schulz

Physics Faculty Research & Creative Works

We apply the frozen-correlation approximation (FCA) to analyze double ionization of helium by energetic highly charged ions. In this model the double ionization amplitude is represented in terms of single ionization amplitudes, which we evaluate within the continuum distorted wave-eikonal initial state (CDW-EIS) approach. Correlation effects are incorporated in the initial and final states, but are neglected during the time the collision process takes place. We implement the FCA using the Monte Carlo event generator technique, which allows us to generate theoretical event files and to compare theory and experiment using the same analysis tools. The comparison with previous theoretical …


Relativistic Reduced-Mass And Recoil Corrections To Vacuum Polarization In Muonic Hydrogen, Muonic Deuterium, And Muonic Helium Ions, Ulrich D. Jentschura Jul 2011

Relativistic Reduced-Mass And Recoil Corrections To Vacuum Polarization In Muonic Hydrogen, Muonic Deuterium, And Muonic Helium Ions, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

The reduced-mass dependence of relativistic and radiative effects in simple muonic bound systems is investigated. The spin-dependent nuclear recoil correction of order (Zα)4μ3/m2N is evaluated for muonic hydrogen and deuterium and muonic helium ions (μ is the reduced mass and mN is the nuclear mass). Relativistic corrections to vacuum polarization of order α(Zα)4μ are calculated, with a full account of the reduced-mass dependence. The results shift theoretical predictions. The radiative-recoil correction to vacuum polarization of order α(Zα)5-ln2(Zα) μ2/mN is obtained in leading logarithmic approximation. …


Blackbody-Radiation Correction To The Polarizability Of Helium, Mariusz Puchalski, Ulrich D. Jentschura, Peter J. Mohr Apr 2011

Blackbody-Radiation Correction To The Polarizability Of Helium, Mariusz Puchalski, Ulrich D. Jentschura, Peter J. Mohr

Physics Faculty Research & Creative Works

The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric …


Reaction Dynamics In Double Ionization Of Helium By Electron Impact, Marcelo F. Ciappina, Michael Schulz, Tom Kirchner Dec 2010

Reaction Dynamics In Double Ionization Of Helium By Electron Impact, Marcelo F. Ciappina, Michael Schulz, Tom Kirchner

Physics Faculty Research & Creative Works

We present theoretical fully differential cross sections (FDCS) for double ionization of helium by 500 eV and 2 keV electron impact. Contributions from various reaction mechanisms to the FDCS were calculated separately and compared to experimental data. Our theoretical methods are based on the first Born approximation. Higher-order effects are incorporated using the Monte Carlo event generator technique. Earlier, we successfully applied this approach to double ionization by ion impact, and in the work reported here it is extended to electron impact. We demonstrate that at 500 eV impact energy, double ionization is dominated by higher-order mechanisms. Even at 2 …


Theoretical Fully Differential Cross Sections For Double-Charge-Transfer Collisions, Allison L. Harris, Jerry Peacher, Don H. Madison Aug 2010

Theoretical Fully Differential Cross Sections For Double-Charge-Transfer Collisions, Allison L. Harris, Jerry Peacher, Don H. Madison

Physics Faculty Research & Creative Works

We present a four-body model for double charge transfer, called the four-body double-capture model. This model explicitly treats all four particles in the collision, and we apply it here to fully differential cross sections (FDCSs) for proton+helium collisions. The effects of initial- and final-state electron correlations are studied, as well as the role of the projectile-nucleus interaction. We also present results for proton+helium single capture, as well as single-capture:double-capture ratios of FDCSs.


Comment On "Coincidence Studies Of He Ionized By C⁶⁺, Au²⁴⁺, And Au⁵³⁺", Michael Schulz, Robert Moshammer, Daniel Fischer, Joachim Hermann Ullrich Jun 2010

Comment On "Coincidence Studies Of He Ionized By C⁶⁺, Au²⁴⁺, And Au⁵³⁺", Michael Schulz, Robert Moshammer, Daniel Fischer, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

In a recent article, McGovern [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA. 81.042704 81, 042704 (2010)] suggested that the normalization of our measured fully differential cross section for ionization of helium by Au53+ needs to be checked. In this comment we confirm that the normalization of the published data is correct. Furthermore, we point out that, for a conclusive comparison between experiment and theory, an accurate inclusion of the experimental resolution using correct experimental parameters in the calculation is important.


Four-Body Charge Transfer Processes In Heavy Particle Collisions, Allison L. Harris, Jerry Peacher, Michael Schulz, Don H. Madison Jan 2010

Four-Body Charge Transfer Processes In Heavy Particle Collisions, Allison L. Harris, Jerry Peacher, Michael Schulz, Don H. Madison

Physics Faculty Research & Creative Works

Fully differential cross sections (FDCS) for proton + helium single capture and transfer-excitation collisions are presented using the Four-Body Transfer-Excitation (4BTE) model. This is a first order perturbative model that allows for any two-particle interaction to be studied. For single capture, the effect of the projectile-nuclear term in the perturbation is examined. It is shown that inclusion of this term results in an unphysical minimum in the FDCS, but is required to correctly predict the magnitude of the experimental results. For transfer-excitation, the role of electron correlation in the target helium atom is studied, and shown to be unimportant in …


Systematic Analysis Of Double-Ionization Dynamics Based On Four-Body Dalitz Plots, Daniel Fischer, Michael Schulz, Katharina R. Schneider, Marcelo F. Ciappina, Tom Kirchner, Aditya H. Kelkar, S. Hagman, Manfred Grieser, Kai Uwe Kuhnel, Robert Moshammer, Joachim Hermann Ullrich Dec 2009

Systematic Analysis Of Double-Ionization Dynamics Based On Four-Body Dalitz Plots, Daniel Fischer, Michael Schulz, Katharina R. Schneider, Marcelo F. Ciappina, Tom Kirchner, Aditya H. Kelkar, S. Hagman, Manfred Grieser, Kai Uwe Kuhnel, Robert Moshammer, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

We report on an experimental and theoretical systematic study of double ionization of helium by ion impact in terms of four-particle Dalitz plots. Several collision systems covering abroad range of perturbation parameters η (projectile charge to speed ratio) were investigated. With increasing η we observe a systematic trend from features, characteristic to correlated double-ionization mechanisms, to signatures of higher-order processes not requiring electron-electron correlations [the mechanism called "two-step-two projectile-electron interaction" (TS-2)]. The data for the largest η can qualitatively be amazingly well described by a simple model only including the TS-2 mechanism.


Four-Body Model For Transfer Excitation, Allison L. Harris, Jerry Peacher, Don H. Madison, James Colgan Dec 2009

Four-Body Model For Transfer Excitation, Allison L. Harris, Jerry Peacher, Don H. Madison, James Colgan

Physics Faculty Research & Creative Works

We present here a four-body model for transfer-excitation collisions, which we call the four-body transfer-excitation (4BTE) model. Each two-body interaction is explicitly included in the 4BTE model, allowing us to study the effects of individual two-body interactions. We apply our model to fully differential cross sections for proton+helium collisions, and study the effect of the incident projectile-atom interaction, the scattered projectile-ion interaction, the projectile-nuclear interaction, and electron correlation within the target atom.


Feasibility Of Coherent Xuv Spectroscopy On The 1s-2s Transition In Singly Ionized Helium, Maximilian Herrmann, Martin K. Haas, Ulrich D. Jentschura, Franz Kottmann, Dietrich Leibfried, Guido Saathoff, Christoph Gohle, Akira Ozawa, V. Batteiger, S. Knunz, Nikolai N. Kolachevsky, H. A. Schussler, Theodor Wolfgang Hansch, Th H. Udem May 2009

Feasibility Of Coherent Xuv Spectroscopy On The 1s-2s Transition In Singly Ionized Helium, Maximilian Herrmann, Martin K. Haas, Ulrich D. Jentschura, Franz Kottmann, Dietrich Leibfried, Guido Saathoff, Christoph Gohle, Akira Ozawa, V. Batteiger, S. Knunz, Nikolai N. Kolachevsky, H. A. Schussler, Theodor Wolfgang Hansch, Th H. Udem

Physics Faculty Research & Creative Works

The 1S-2S two-photon transition in singly ionized helium is a highly interesting candidate for precision tests of bound-state quantum electrodynamics (QED). With the recent advent of extreme ultraviolet frequency combs, highly coherent quasi-continuous-wave light sources at 61 nm have become available, and precision spectroscopy of this transition now comes into reach for the first time. We discuss quantitatively the feasibility of such an experiment by analyzing excitation and ionization rates, propose an experimental scheme, and explore the potential for QED tests.


Differential Cross Sections For The Ionization Of Oriented H₂ Molecules By Electron Impact, James Colgan, Michael S. Pindzola, Francis J. Robicheaux, Christian V. Kaiser, Andrew James Murray, Don H. Madison Dec 2008

Differential Cross Sections For The Ionization Of Oriented H₂ Molecules By Electron Impact, James Colgan, Michael S. Pindzola, Francis J. Robicheaux, Christian V. Kaiser, Andrew James Murray, Don H. Madison

Physics Faculty Research & Creative Works

A nonperturbative close-coupling technique is used to calculate differential cross sections for the electron-impact ionization of H2 at an energy of 35.4 eV. Our approach allows cross sections for any orientation of the molecule with respect to the incident electron beam to be analyzed. New features in the resulting cross sections are found compared with the case where the molecular orientation is averaged, and also with cross sections for He at equivalent electron kinematics. When averaged over all possible molecular orientations, good agreement is found with recent experimental results.


Reexamining Blackbody Shifts For Hydrogenlike Ions, Ulrich D. Jentschura, Martin K. Haas Oct 2008

Reexamining Blackbody Shifts For Hydrogenlike Ions, Ulrich D. Jentschura, Martin K. Haas

Physics Faculty Research & Creative Works

We investigate blackbody-induced energy shifts for low-lying levels of atomic systems, with a special emphasis on transitions used in current and planned high-precision experiments on atomic hydrogen and ionized helium. Fine-structure- and Lamb-shift-induced blackbody shifts are found to increase with the square of the nuclear charge number, whereas blackbody shifts due to virtual transitions decrease with increasing nuclear charge as the fourth power of the nuclear charge. We also investigate the decay width acquired by the ground state of atomic hydrogen, due to interaction with blackbody photons. The corresponding width is due to an instability against excitation to higher excited …


Signature Of Ericson Fluctuations In Helium Inelastic Scattering Cross Sections Near The Double Ionization Threshold, Junliang Xu, Anh-Thu Le, Toru Morishita, C. D. Lin Jul 2008

Signature Of Ericson Fluctuations In Helium Inelastic Scattering Cross Sections Near The Double Ionization Threshold, Junliang Xu, Anh-Thu Le, Toru Morishita, C. D. Lin

Physics Faculty Research & Creative Works

We calculated the inelastic electron impact excitation cross sections of He⁺ by electrons for a model helium atom to examine the onset of the signature of quantum chaotic scattering in this simple system. We find Ericson fluctuations (EF) in the calculated inelastic scattering cross sections only when the impact energies lie within about 0.21 eV below the double ionization threshold. We also discuss the stringent requirements and the proper methods for analyzing the inelastic scattering cross sections in order to observe EF experimentally.


Double Ionization Of Helium By Ion Impact Analyzed Using Four-Body Dalitz Plots, M. F. Ciappina, Michael Schulz, T. Kirchner, Daniel Fischer, R. Moshammer, J. D. Ullrich Jun 2008

Double Ionization Of Helium By Ion Impact Analyzed Using Four-Body Dalitz Plots, M. F. Ciappina, Michael Schulz, T. Kirchner, Daniel Fischer, R. Moshammer, J. D. Ullrich

Physics Faculty Research & Creative Works

We have performed experimental and theoretical studies of double ionization of helium by 6 MeV proton impact using a recently developed tool, four-particle Dalitz plots [Schulz et al., J. Phys. B 22, 3091 (2007)] which enable the representation of multiple differential cross sections as a function of all four fragments in a single spectrum without loss of any part of the total cross section. As a result, the relative importance of the various interactions between the fragments can be studied in great detail. Comparisons of experimental data with theoretical first-order calculations and simulations for the higher-order (TS-2) process show that …


Alignment Of Heavy Few-Electron Ions Following Excitation By Relativistic Coulomb Collisions, Andrey S. Surzhykov, Ulrich D. Jentschura, Th H. Stohlker, Alexandre Gumberidze, Stephan Fritzsche Apr 2008

Alignment Of Heavy Few-Electron Ions Following Excitation By Relativistic Coulomb Collisions, Andrey S. Surzhykov, Ulrich D. Jentschura, Th H. Stohlker, Alexandre Gumberidze, Stephan Fritzsche

Physics Faculty Research & Creative Works

The Coulomb excitation of highly charged few-electron ions in relativistic collisions with protons and low- Z atoms is studied within the framework of first-order perturbation theory and the multiconfiguration Dirac-Fock method. Apart from the computation of the total excitation cross sections, a detailed theoretical analysis has been performed for the magnetic sublevel population of the residual ions. To describe this population, general expressions are derived for the alignment parameters of the excited states of the ions, taking into account the relativistic and many-electron effects. Calculations are performed for the K→L and K→M excitation of helium- and lithiumlike uranium ions and …


Energy-Dependent Ps-He Momentum-Transfer Cross Section At Low Energies, J. J. Engbrecht, M. J. Erickson, C. P. Johnson, A. J. Kolan, A. E. Legard, S. P. Lund, M. J. Nyflot, J. D. Paulsen Jan 2008

Energy-Dependent Ps-He Momentum-Transfer Cross Section At Low Energies, J. J. Engbrecht, M. J. Erickson, C. P. Johnson, A. J. Kolan, A. E. Legard, S. P. Lund, M. J. Nyflot, J. D. Paulsen

Physics - All Scholarship

Positronium (Ps)-He scattering presents one of the few opportunities for both theory and experiment to tackle the fundamental interactions of Ps with ordinary matter. Below the dissociation energy of 6.8 eV, experimental and theoretical work has struggled to find agreement on the strength of this interaction as measured by the momentum-transfer cross section (Ïm). Here, we present work utilizing the Doppler broadening technique with an age-momentum correlation apparatus. This work demonstrates a strong energy dependence for this cross section at energies below 1 eV and is consistent with previous experimental results.


Electron Density And Temperature Measurement Of An Atmospheric Pressure Plasma By Millimeter Wave Interferometer, Xinpei Lu, Mounir Laroussi Jan 2008

Electron Density And Temperature Measurement Of An Atmospheric Pressure Plasma By Millimeter Wave Interferometer, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

In this paper, a 105 GHz millimeter wave interferometer system is used to measure the electron density and temperature of an atmospheric pressure helium plasma driven by submicrosecond pulses. The peak electron density and electron-neutral collision frequency reach 8 X 1012 cm-3 and 2.1 X 1012 s-1, respectively. According to the electron-helium collision cross section and the measured electron-neutral collision frequency, the electron temperature of the plasma is estimated to reach a peak value of about 8.7 eV.


Projectile Angular-Differential Cross Sections For Transfer And Transfer Excitation In Proton Collisions With Helium, M. Zapukhlyak, T. Kirchner, Ahmad Hasan, B. Tooke, Michael Schulz Jan 2008

Projectile Angular-Differential Cross Sections For Transfer And Transfer Excitation In Proton Collisions With Helium, M. Zapukhlyak, T. Kirchner, Ahmad Hasan, B. Tooke, Michael Schulz

Physics Faculty Research & Creative Works

Projectile angular-differential cross sections for single-transfer and transfer excitation have been calculated with the two-center extension of the nonperturbative basis generator method for 5-200 keV proton-helium collisions. The calculations are based on the independent electron model, and the eikonal approximation has been used to extract angular-differential cross sections from impact-parameter-dependent transition amplitudes. The present results are compared with experimental and previous theoretical data where available. In particular, we consider the ratio of transfer excitation to single capture versus double excitation to single excitation at intermediate energies. An experimentally observed structure in this ratio at a scattering angle about 0.5 mrad …


Triple-Differential Cross Sections For Target Ionization With Simultaneous Projectile Detachment In 200-Kev H⁻ + He Collisions, T. Ferger, Michael Schulz, Daniel Fischer, B. Najjari, R. Moshammer, J. D. Ullrich Oct 2007

Triple-Differential Cross Sections For Target Ionization With Simultaneous Projectile Detachment In 200-Kev H⁻ + He Collisions, T. Ferger, Michael Schulz, Daniel Fischer, B. Najjari, R. Moshammer, J. D. Ullrich

Physics Faculty Research & Creative Works

We have performed a kinematically complete experiment for target ionization with simultaneous projectile detachment (TIPD) in 200-keV H + He collisions. From the data we extracted triple-differential cross sections (TDCSs) for each electron separately. These TDCSs closely resemble corresponding data for single ionization by charged-particle impact. Surprisingly, the contributions from higher-order processes to TIPD, proceeding through two independent interactions of each electron with the core of the respective other collision partner, are found to be somewhat larger than the first-order process proceeding through the electron-electron interaction.