Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight Aug 2020

Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, optical Hall effect (OHE) measurements are used to determine the free charge carrier properties of important two-dimensional materials and monoclinic oxides. Two-dimensional material systems have proven useful in high-frequency electronic devices due to their unique properties, such as high mobility, which arise from their two-dimensional nature. Monoclinic oxides exhibit many desirable characteristics, for example low-crystal symmetry which could lead to anisotropic carrier properties. Here, single-crystal monoclinic gallium oxide, an AlInN/GaN-based high-electron-mobility transistor (HEMT) structure, and epitaxial graphene are studied as examples. To characterize these material systems, the OHE measurement technique is employed. The OHE is a physical …


Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert Feb 2019

Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert

Christian Binek Publications

Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak Oct 2017

Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak

Faculty Publications

Nanostructured optical materials, for example, metamaterials, have unique spectral, directional, and polarimetric properties. Samples designed and fabricated for infrared (IR) wavelengths have been characterized using broadband instruments to measure specular polarimetric transmittance or reflectance as in ellipsometry or integrated hemisphere transmittance or reflectance. We have developed a wavelength-tunable IR Mueller-matrix (Mm) polarimetric scatterometer which uses tunable external-cavity quantum-cascade lasers (EC-QCLs) to tune onto and off of the narrowband spectral resonances of nanostructured optical materials and performed full polarimeteric and directional evaluation to more fully characterize their behavior. Using a series of EC-QCLs, the instrument is tunable over 4.37-6.54 μm wavelengths …


Index Of Refraction From The Near-Ultraviolet To The Near-Infrared From A Single Crystal Microwave-Assisted Cvd Diamond, Giorgio Turri, Scott Webster, Ying Chen, Benjamin Wickham, Andrew Bennett, Michael Bass Mar 2017

Index Of Refraction From The Near-Ultraviolet To The Near-Infrared From A Single Crystal Microwave-Assisted Cvd Diamond, Giorgio Turri, Scott Webster, Ying Chen, Benjamin Wickham, Andrew Bennett, Michael Bass

Publications

The refractive index of a type IIa CVD-grown single-crystal diamond was measured by ellipsometry from the near ultraviolet to the near infrared region of the spectrum. As a consequence, a one term Sellmeier Equation with coefficents of B-1 = 4.658 and C-1 = 112.5 for the refractive index of diamond, for the wavelength range from 300 to 1650 nm, was derived that is only as accurate as the input data, +/- 0.002. The experimental results in this paper between 800 and 1650 nm are new, adding to the values available in the literature.


Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac Mar 2011

Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

The dielectric function of Ag nanoparticle films, deduced from an analysis of in situ real-time spectroscopic ellipsometry (RTSE) measurements, is found to evolve with time during deposition in close consistency with the film structure, deduced in the same RTSE analysis. In the nucleation regime, the intraband dielectric function component is absent and plasmon polariton behavior dominates. Only at nuclei contact, does the intraband amplitude appear, increasing above zero. Both intraband and plasmon amplitudes coexist during surface smoothening associated with coalescence. The intraband relaxation time increases rapidly after surface smoothening is complete, also in consistency with the thin film structural evolution.