Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physics

Comparing Proton Momentum Distributions In A = 2 And 3 Nuclei Via 2H 3H And 3He (E,E′P) Measurements, R. Cruz-Torres, F. Hauenstein, A. Schmidt, D. Nguyen, D. Abrams, H. Albataineh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, D. Bulumulla, C. E. Hyde, V. Khachatryan, M. N.H. Rashad, L. B. Weinstein, Z. Y. Ye, J. Zhang, Jefferson Lab Hall A Tritium Collaboration Oct 2019

Comparing Proton Momentum Distributions In A = 2 And 3 Nuclei Via 2H 3H And 3He (E,E′P) Measurements, R. Cruz-Torres, F. Hauenstein, A. Schmidt, D. Nguyen, D. Abrams, H. Albataineh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, D. Bulumulla, C. E. Hyde, V. Khachatryan, M. N.H. Rashad, L. B. Weinstein, Z. Y. Ye, J. Zhang, Jefferson Lab Hall A Tritium Collaboration

Physics Faculty Publications

We report the first measurement of the (e, e' p) reaction cross-section ratios for Helium-3 (3He), Tritium (3H), and Deuterium (d). The measurement covered a missing momentum range of 40 ≤ pmiss ≤ 550 MeV/c, at large momentum transfer ({Q2} ≈ 1.9 (GeV/c)2) and xB > 1, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with planewave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for 3He/d and 3H/d extend to just above the typical …


Dynamic Secondary Electron Emission In Rough Composite Materials, Leandro Olano, Maria E. Dávila, John R. Dennison, Petronilo Martín-Iglesias, Isabel Montero Sep 2019

Dynamic Secondary Electron Emission In Rough Composite Materials, Leandro Olano, Maria E. Dávila, John R. Dennison, Petronilo Martín-Iglesias, Isabel Montero

All Physics Faculty Publications

The interaction of ionizing radiation with matter is of critical importance in numerous areas of science and technology like space and vacuum technology and even medicine and biotechnology. Secondary electron emission is a consequence of electron irradiation on materials. We achieve extremely low secondary electron emission yield values smaller than 0.2, even up to incident electron energies ~1 keV, due to an undocumented synergy between neighbouring metal and dielectric domains in composite samples. To investigate this experimental discovery, we propose a simple 3D model where the dielectric and metallic domains are arranged in parallel and interleaved. The proposed surface profile …


Measuring Length Of Electron Bunches With Optics In Lcls-Ii, Nathan Ahn, Alan Fisher Sep 2019

Measuring Length Of Electron Bunches With Optics In Lcls-Ii, Nathan Ahn, Alan Fisher

STAR Program Research Presentations

Since the launch of the LINAC Coherent Light Source (LCLS) in 2009, there have been over 1,000 publications enabling pioneering research across multiple fields. Advances include: harnessing the sun’s light, revealing life’s secrets and aiding drug development, developing future electronics, designing new materials and exploring fusion, customizing chemical reactions, and many more. These discoveries gathered worldwide attention, and now work has begun on a new revolutionary tool, LCLS-II. The LCLS-II will pulse at a million times a second, compared to the 120 pulses from the LCLS. Within the LCLS-II, there are two chicanes, serpentine curves. As the electron beam passes …


Two-Energy Storage-Ring Electron Cooler For Relativistic Ion Beams, Bhawin Dhital, Jean R. Delayen, Y. S. Derbenev, D. Douglas, Geoffrey A. Krafft, F. Lin, V. S. Morozov, Y. Zhang Jan 2019

Two-Energy Storage-Ring Electron Cooler For Relativistic Ion Beams, Bhawin Dhital, Jean R. Delayen, Y. S. Derbenev, D. Douglas, Geoffrey A. Krafft, F. Lin, V. S. Morozov, Y. Zhang

Physics Faculty Publications

An electron beam based cooling system for the ion beam is one of the commonly used approaches. The proposed two’energy storage-ring electron cooler consists of damping and cooling sections at markedly different energies connected by an energy recovering superconducting RF structure. The parameters in the cooling and damping sections are adjusted for optimum cooling of a stored ion beam and for optimum damping of the electron beam respectively. This paper briefly describes a two cavities model along with a third cavity model to accelerate and decelerate the electron beam in two energy storage ring. Based on our assumed value of …


Analysis Of Higher Order Multipoles Of The 952.6 Mhz Rf-Dipole Crabbing Cavity For The Jefferson Lab Electron Ion Collider, Subashini U. De Silva, J. R. Delayen, V. S. Morozov, H. Park, S. Sosa Jan 2019

Analysis Of Higher Order Multipoles Of The 952.6 Mhz Rf-Dipole Crabbing Cavity For The Jefferson Lab Electron Ion Collider, Subashini U. De Silva, J. R. Delayen, V. S. Morozov, H. Park, S. Sosa

Physics Faculty Publications

The crabbing system is a key feature in the Jefferson Lab Electron-Ion Collider (JLEIC) required to increase the luminosity of the colliding bunches. A local crabbing system will be installed with superconducting rf-dipole crabbing cavities operating at 952.6 MHz. The field non-uniformity across the beam aperture in the crabbing cavities produces higher order multipole components, similar to that which are present in magnets. Knowledge of higher order mode multipole field effects is important for accurate beam dynamics study for the crabbing system. In this paper, we quantify the multipole components and analyse their effects on the beam dynamics.


High Current High Charge Magnetized And Bunched Electron Beam From A Dc Photogun For Jleic Cooler, S. Zhang, P. A. Adderley, J. F. Benesch, D. B. Bullard, Jean R. Delayen, J. M. Grames, J. Guo, F. E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, Geoffrey A. Krafft, M. A. Mamun, M. Poelker, R. Suleiman, M.G. Tiefenback, Y.W. Wang, S.A.K. Wijethunga Jan 2019

High Current High Charge Magnetized And Bunched Electron Beam From A Dc Photogun For Jleic Cooler, S. Zhang, P. A. Adderley, J. F. Benesch, D. B. Bullard, Jean R. Delayen, J. M. Grames, J. Guo, F. E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, Geoffrey A. Krafft, M. A. Mamun, M. Poelker, R. Suleiman, M.G. Tiefenback, Y.W. Wang, S.A.K. Wijethunga

Physics Faculty Publications

A high current, high charge magnetized electron beamline that has been under development for fast and efficient cooling of ion beams for the proposed Jefferson Lab Electron Ion Collider (JLEIC). In this paper, we present the latest progress over the past year that include the generation of picosecond magnetized beam bunches at average currents up to 28 mA with exceptionally long photocathode lifetime, and the demonstrations of magnetized beam with high bunch charge up to 700 pC at 10s of kHz repetition rates. Detailed studies on a stable drive laser system, long lifetime photocathode, beam magnetization effect, beam diagnostics, and …


Electron-Ion Collider Performance Studies With Beam Synchronization Via Gear-Change, I. Neththikumara, Geoffrey A. Krafft, Y. Roblin, Balša Terzić Jan 2019

Electron-Ion Collider Performance Studies With Beam Synchronization Via Gear-Change, I. Neththikumara, Geoffrey A. Krafft, Y. Roblin, Balša Terzić

Physics Faculty Publications

Beam synchronization of the future electron-ion collider (EIC) is studied with introducing different bunch numbers in the two colliding beams. This allows non-pairwise collisions between the bunches of the two beams and is known as "gear-change", whereby one bunch of the first beam collides with all other bunches of the second beam, one at a time. Here we report on the study of how the beam dynamics of the Jefferson Lab Electron Ion collider concept is affected by the gear change. For this study, we use the new GPU-based code (GHOST). It features symplectic one-turn maps for particle tracking and …


Beam-Beam Effect: Crab Dynamics Calculation In Jleic, He Huang, Vasiliy Morozov, Yves Roblin, Amy Sy, Fanglei Lin, Yuhong Zhang, Balša Terzić, Salvador Sosa, Isurumali Neththikumara Jan 2019

Beam-Beam Effect: Crab Dynamics Calculation In Jleic, He Huang, Vasiliy Morozov, Yves Roblin, Amy Sy, Fanglei Lin, Yuhong Zhang, Balša Terzić, Salvador Sosa, Isurumali Neththikumara

Physics Faculty Publications

The electron and ion beams of a future Electron Ion Collider (EIC) must collide at an angle for detection, machine and engineering design reasons. To avoid associated luminosity reduction, a local crabbing scheme is used where each beam is crabbed before collision and de-crabbed after collision. The crab crossing scheme then provides a head-on collision for beams with a non-zero crossing angle. We develop a framework for accurate simulation of crabbing dynamics with beam-beam effects by combining symplectic particle tracking codes with a beam-beam model based on the Bassetti-Erskine analytic solution. We present simulation results using our implementation of such …


Equilibria And Synchrotron Stability In Two Energy Storage Rings, B. Dhital, Jean R. Delayen, Y. S. Derbenev, D. Douglas, Geoffrey A. Krafft, F. Lin, B. Morozov, Y. Zhang Jan 2019

Equilibria And Synchrotron Stability In Two Energy Storage Rings, B. Dhital, Jean R. Delayen, Y. S. Derbenev, D. Douglas, Geoffrey A. Krafft, F. Lin, B. Morozov, Y. Zhang

Physics Faculty Publications

In a dual energy storage ring, the electron beam passes through two loops at markedly different energies E_{L}, and E_{H}, i.e., energies for low energy loop and high energy loop respectively. These loops use a common beamline where a superconducting linac at first accelerates the beam from EL to EH and then decelerates the beam from EH to EL in the next pass. There are two basic solutions to the equilibrium problems possible, i.e., ’Storage Ring’ (SR) equilibrium and ’Energy Recovery Linac’ (ERL) equilibrium. SR equilibrium mode more resembles the usual single loop storage ring with strong synchrotron motion and …


Simulation Study Of The Emittance Measurements In Magnetized Electron Beam, S.A.K. Wijethunga, J. Benesch, Jean R. Delayen, F. E. Hannon, Geoffrey A. Krafft, M. A. Mamun, G. Palacios-Serrano, M. Poelker, R. Suleiman, S. Zhang Jan 2019

Simulation Study Of The Emittance Measurements In Magnetized Electron Beam, S.A.K. Wijethunga, J. Benesch, Jean R. Delayen, F. E. Hannon, Geoffrey A. Krafft, M. A. Mamun, G. Palacios-Serrano, M. Poelker, R. Suleiman, S. Zhang

Physics Faculty Publications

Electron cooling of the ion beam is key to obtaining the required high luminosity of proposed electron-ion colliders. For the Jefferson Lab Electron Ion Collider, the expected luminosity of 10³⁴ 〖 cm〗⁻² s⁻¹ will be achieved through so-called ’magnetized electron cooling’, where the cooling process occurs inside a solenoid field, which will be part of the collider ring and facilitated using a circulator ring and Energy Recovery Linac (ERL). As an initial step, we generated magnetized electron beam using a new compact DC high voltage photogun biased at -300 kV employing an alkali-antimonide photocathode. This contribution presents the characterization of …


Space Charge Study Of The Jefferson Lab Magnetized Electron Beam, Sajini A.K. Wijethunga, J. F. Benesch, Jean R. Delayen, F. E. Hannon, C. Hernandez-Garcia, Geoffrey A. Krafft, M. A. Mamun, M. Poelker, R. Suleiman, S. Zhang Jan 2019

Space Charge Study Of The Jefferson Lab Magnetized Electron Beam, Sajini A.K. Wijethunga, J. F. Benesch, Jean R. Delayen, F. E. Hannon, C. Hernandez-Garcia, Geoffrey A. Krafft, M. A. Mamun, M. Poelker, R. Suleiman, S. Zhang

Physics Faculty Publications

Magnetized electron cooling could result in high luminosity at the proposed Jefferson Lab Electron-Ion Collider (JLEIC). In order to increase the cooling efficiency, a bunched electron beam with high bunch charge and high repetition rate is required. We generated magnetized electron beams with high bunch charge using a new compact DC high voltage photo-gun biased at -300 kV with alkali-antimonide photocathode and a commercial ultrafast laser. This contribution explores how magnetization affects space charge dominated beams as a function of magnetic field strength, gun high voltage, laser pulse width, and laser spot size.


The Us Electron Ion Collider Accelerator Designs, A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Brucker, A. Camsonne, E. Daly, P.V. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, R.C. York, Et Al. Jan 2019

The Us Electron Ion Collider Accelerator Designs, A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Brucker, A. Camsonne, E. Daly, P.V. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, R.C. York, Et Al.

Physics Faculty Publications

With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.


Design Of A Proof-Of-Principle Crabbing Cavity For The Jefferson Lab Electron-Ion Collider, Hyekyoung Park, Subashini U. De Silva, Salvador I. Sosa Guitron, Jean R. Delayen Jan 2019

Design Of A Proof-Of-Principle Crabbing Cavity For The Jefferson Lab Electron-Ion Collider, Hyekyoung Park, Subashini U. De Silva, Salvador I. Sosa Guitron, Jean R. Delayen

Physics Faculty Publications

The Jefferson Lab design for an electron-ion collider (JLEIC) requires crabbing of the electron and ion beams in order to achieve the design luminosity. A number of options for the crabbing cavities have been explored, and the one which has been selected for the proof-of-principle is a 952 MHz, 2-cell rf-dipole (RFD) cavity. This paper summarizes the electromagnetic design of the cavity and its HOM characteristics.


Magnetized Electron Source For Jleic Cooler, R. Suleiman, P.A. Adderley, J.F. Benesch, D.B. Bullard, J.R. Delayen, J.M. Grames, J. Guo, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, M.A. Mamun, M. Poelker, M.G. Tiefenback, Y.W. Wang, S.A.K. Wijethunga, J. T. Yoskowitz, S. Zhang Jan 2019

Magnetized Electron Source For Jleic Cooler, R. Suleiman, P.A. Adderley, J.F. Benesch, D.B. Bullard, J.R. Delayen, J.M. Grames, J. Guo, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, M.A. Mamun, M. Poelker, M.G. Tiefenback, Y.W. Wang, S.A.K. Wijethunga, J. T. Yoskowitz, S. Zhang

Physics Faculty Publications

Magnetized bunched-beam electron cooling is a critical part of the Jefferson Lab Electron Ion Collider (JLEIC). Strong cooling of ion beams will be accomplished inside a cooling solenoid where the ions co-propagate with an electron beam generated from a source immersed in magnetic field. This contribution describes the production and characterization of magnetized electron beam using a compact 300 kV DC high voltage photogun and bialkali-antimonide photocathodes. Beam magnetization was studied using a diagnostic beamline that includes viewer screens for measuring the shearing angle of the electron beamlet passing through a narrow upstream slit. Correlated beam emittance with magnetic field …


Compact Srf Linac For High Brilliance Inverse Compton Scattering Light Source, Kirsten E. Deitrick, Jean R. Delayen, Geoffrey A. Krafft, Balša Terzić Jan 2019

Compact Srf Linac For High Brilliance Inverse Compton Scattering Light Source, Kirsten E. Deitrick, Jean R. Delayen, Geoffrey A. Krafft, Balša Terzić

Physics Faculty Publications

New designs for compact SRF linacs can produce micron-size electron beams. These can can be used for inverse Compton scattering light sources of exceptional flux and brilliance.