Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Relating The Finite-Volume Spectrum And The Two And Three-Particle S Matrix For Relativistic Systems Of Identical Scalar Particles, Raúl Briceño, Maxwell T. Hansen, Stephen R. Sharpe Jan 2017

Relating The Finite-Volume Spectrum And The Two And Three-Particle S Matrix For Relativistic Systems Of Identical Scalar Particles, Raúl Briceño, Maxwell T. Hansen, Stephen R. Sharpe

Physics Faculty Publications

Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicity L. This gives the relation between the finite-volume spectrum and the infinite-volume 2 → 2, 2 → 3, and 3 → 3 scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass m, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K matrix has no singularities below the three-particle threshold. The quantization condition is exact …


Boundary Conditions As Dynamical Fields, V. Parameswaran Nair, Dimitra Karabali Dec 2015

Boundary Conditions As Dynamical Fields, V. Parameswaran Nair, Dimitra Karabali

Publications and Research

The possibility of treating boundary conditions in terms of a bilocal dynamical field is formalized in terms of a boundary action. This allows for a simple path-integral perturbation theory approach to physical effects such as radiation from a time-dependent boundary. The nature of the action which governs the dynamics of the bilocal field is investigated for a limited case (which includes the Robin boundary conditions).


Lattice-Boltzmann Simulations Of The Thermally Driven 2d Square Cavity At High Rayleigh Numbers, Dario Contrino, Pierre Lallemand, Pietro Asinari, Li-Shi Luo Jan 2014

Lattice-Boltzmann Simulations Of The Thermally Driven 2d Square Cavity At High Rayleigh Numbers, Dario Contrino, Pierre Lallemand, Pietro Asinari, Li-Shi Luo

Mathematics & Statistics Faculty Publications

The thermal lattice Boltzmann equation (TLBE) with multiple-relaxation-times (MRT) collision model is used to simulate the steady thermal convective flows in the two-dimensional square cavity with differentially heated vertical walls at high Rayleigh numbers. The MRT-TLBE consists of two sets of distribution functions, i.e., a D2Q9 model for the mass-momentum equations and a D2Q5 model for the temperature equation. The dimensionless flow parameters are the following: the Prandtl number Pr = 0.71 and the Rayleigh number Ra = 106, 107, and 108. The D2Q9 + D2Q5 MRT-TLBE is shown to be second-order accurate and …


Singular Superposition/Boundary Element Method For Reconstruction Of Multi-Dimensional Heat Flux Distributions With Application To Film Cooling Holes, Mahmood Silieti, Eduardo Divo, Alain J. Kassab Jan 2009

Singular Superposition/Boundary Element Method For Reconstruction Of Multi-Dimensional Heat Flux Distributions With Application To Film Cooling Holes, Mahmood Silieti, Eduardo Divo, Alain J. Kassab

Publications

A hybrid singularity superposition/boundary element-based inverse problem method for the reconstruction of multi-dimensional heat flux distributions is developed. Cauchy conditions are imposed at exposed surfaces that are readily reached for measurements while convective boundary conditions are unknown at surfaces that are not amenable to measurements such as the walls of the cooling holes. The purpose of the inverse analysis is to determine the heat flux distribution along cooling hole surfaces. This is accomplished in an iterative process by distributing a set of singularities (sinks) inside the physical boundaries of the cooling hole (usually along cooling hole centerline) with a given …


Scattering Of Shock Waves In Qcd, Ian Balitsky Jan 2004

Scattering Of Shock Waves In Qcd, Ian Balitsky

Physics Faculty Publications

The cross section of heavy-ion collisions is represented as a double functional integral with the saddle point being the classical solution of the Yang-Mills equations with boundary conditions/sources in the form of two shock waves corresponding to the two colliding ions. I develop the expansion of this classical solution in powers of the commutator of the Wilson lines describing the colliding particles and calculate the first two terms of the expansion.


Ionization Of Hydrogen Atoms By Fast Electrons, Sindu P. Jones, Don H. Madison Oct 2000

Ionization Of Hydrogen Atoms By Fast Electrons, Sindu P. Jones, Don H. Madison

Physics Faculty Research & Creative Works

We study ionization of atomic hydrogen by fast electrons using asymptotically correct two-center wave functions to describe the scattering system both initially and finally. For the final state, we employ the well-known product wave function of Redmond, which treats all three two-body Coulomb interactions exactly, albeit independently. This "3C" wave function is the leading term of the exact scattering wave function, regardless of how slow the three particles are, if any two particles have large relative separation [Y.E. Kim and A.L. Zubarev, Phys. Rev. A 56, 521 (1997)]. Here we extend the analysis of Qiu et al. [Phys. Rev. A …


Boundary Conditions For The Diffusion Equation In Radiative Transfer, Richard C. Haskell, Lars O. Svaasand, Tsong-Tseh Tsay, Ti-Chen Feng, Matthew S. Mcadams, Bruce J. Tromberg Oct 1994

Boundary Conditions For The Diffusion Equation In Radiative Transfer, Richard C. Haskell, Lars O. Svaasand, Tsong-Tseh Tsay, Ti-Chen Feng, Matthew S. Mcadams, Bruce J. Tromberg

All HMC Faculty Publications and Research

Using the method of images, we examine the three boundary conditions commonly applied to the surface of a semi-infinite turbid medium. We find that the image-charge configurations of the partial-current and extrapolated-boundary conditions have the same dipole and quadrupole moments and that the two corresponding solutions to the diffusion equation are approximately equal. In the application of diffusion theory to frequency-domain photon-migration (FDPM) data, these two approaches yield values for the scattering and absorption coefficients that are equal to within 3%. Moreover, the two boundary conditions can be combined to yield a remarkably simple, accurate, and computationally fast method for …